A generalized Scharfetter-Gummel scheme for nonlocal cross-diffusion systems
Abstract
An implicit Euler finite-volume scheme for a nonlocal cross-diffusion system on the multidimensional torus is analyzed. The equations describe the dynamics of population species with repulsive or attractive interactions. The numerical scheme is based on a generalized Scharfetter-Gummel discretization of the nonlocal flux term. For merely integrable kernel functions, the scheme preserves the positivity, total mass, and entropy structure. The existence of a discrete solution and its convergence to a solution to the continuous problem, as the mesh size tends to zero, are shown. A key difficulty is the degeneracy of the generalized Bernoulli function in the Scharfetter-Gummel approximation. This issue is overcome by proving a uniform estimate for the discrete Fisher information, which requires both the Boltzmann and Rao entropy inequalities. Numerical simulations illustrate the features of the scheme in one and two space dimensions.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper