Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCLaMP 3: Universal Music Information Retrieval Across Unaligned Modalities and Unseen Languages
CLaMP 3 is a unified framework developed to address challenges of cross-modal and cross-lingual generalization in music information retrieval. Using contrastive learning, it aligns all major music modalities--including sheet music, performance signals, and audio recordings--with multilingual text in a shared representation space, enabling retrieval across unaligned modalities with text as a bridge. It features a multilingual text encoder adaptable to unseen languages, exhibiting strong cross-lingual generalization. Leveraging retrieval-augmented generation, we curated M4-RAG, a web-scale dataset consisting of 2.31 million music-text pairs. This dataset is enriched with detailed metadata that represents a wide array of global musical traditions. To advance future research, we release WikiMT-X, a benchmark comprising 1,000 triplets of sheet music, audio, and richly varied text descriptions. Experiments show that CLaMP 3 achieves state-of-the-art performance on multiple MIR tasks, significantly surpassing previous strong baselines and demonstrating excellent generalization in multimodal and multilingual music contexts.
CLaMP 2: Multimodal Music Information Retrieval Across 101 Languages Using Large Language Models
Challenges in managing linguistic diversity and integrating various musical modalities are faced by current music information retrieval systems. These limitations reduce their effectiveness in a global, multimodal music environment. To address these issues, we introduce CLaMP 2, a system compatible with 101 languages that supports both ABC notation (a text-based musical notation format) and MIDI (Musical Instrument Digital Interface) for music information retrieval. CLaMP 2, pre-trained on 1.5 million ABC-MIDI-text triplets, includes a multilingual text encoder and a multimodal music encoder aligned via contrastive learning. By leveraging large language models, we obtain refined and consistent multilingual descriptions at scale, significantly reducing textual noise and balancing language distribution. Our experiments show that CLaMP 2 achieves state-of-the-art results in both multilingual semantic search and music classification across modalities, thus establishing a new standard for inclusive and global music information retrieval.
CLaMP: Contrastive Language-Music Pre-training for Cross-Modal Symbolic Music Information Retrieval
We introduce CLaMP: Contrastive Language-Music Pre-training, which learns cross-modal representations between natural language and symbolic music using a music encoder and a text encoder trained jointly with a contrastive loss. To pre-train CLaMP, we collected a large dataset of 1.4 million music-text pairs. It employed text dropout as a data augmentation technique and bar patching to efficiently represent music data which reduces sequence length to less than 10%. In addition, we developed a masked music model pre-training objective to enhance the music encoder's comprehension of musical context and structure. CLaMP integrates textual information to enable semantic search and zero-shot classification for symbolic music, surpassing the capabilities of previous models. To support the evaluation of semantic search and music classification, we publicly release WikiMusicText (WikiMT), a dataset of 1010 lead sheets in ABC notation, each accompanied by a title, artist, genre, and description. In comparison to state-of-the-art models that require fine-tuning, zero-shot CLaMP demonstrated comparable or superior performance on score-oriented datasets.
Codified audio language modeling learns useful representations for music information retrieval
We demonstrate that language models pre-trained on codified (discretely-encoded) music audio learn representations that are useful for downstream MIR tasks. Specifically, we explore representations from Jukebox (Dhariwal et al. 2020): a music generation system containing a language model trained on codified audio from 1M songs. To determine if Jukebox's representations contain useful information for MIR, we use them as input features to train shallow models on several MIR tasks. Relative to representations from conventional MIR models which are pre-trained on tagging, we find that using representations from Jukebox as input features yields 30% stronger performance on average across four MIR tasks: tagging, genre classification, emotion recognition, and key detection. For key detection, we observe that representations from Jukebox are considerably stronger than those from models pre-trained on tagging, suggesting that pre-training via codified audio language modeling may address blind spots in conventional approaches. We interpret the strength of Jukebox's representations as evidence that modeling audio instead of tags provides richer representations for MIR.
Natural Language Processing Methods for Symbolic Music Generation and Information Retrieval: a Survey
Several adaptations of Transformers models have been developed in various domains since its breakthrough in Natural Language Processing (NLP). This trend has spread into the field of Music Information Retrieval (MIR), including studies processing music data. However, the practice of leveraging NLP tools for symbolic music data is not novel in MIR. Music has been frequently compared to language, as they share several similarities, including sequential representations of text and music. These analogies are also reflected through similar tasks in MIR and NLP. This survey reviews NLP methods applied to symbolic music generation and information retrieval studies following two axes. We first propose an overview of representations of symbolic music adapted from natural language sequential representations. Such representations are designed by considering the specificities of symbolic music. These representations are then processed by models. Such models, possibly originally developed for text and adapted for symbolic music, are trained on various tasks. We describe these models, in particular deep learning models, through different prisms, highlighting music-specialized mechanisms. We finally present a discussion surrounding the effective use of NLP tools for symbolic music data. This includes technical issues regarding NLP methods and fundamental differences between text and music, which may open several doors for further research into more effectively adapting NLP tools to symbolic MIR.
CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research
Data are crucial in various computer-related fields, including music information retrieval (MIR), an interdisciplinary area bridging computer science and music. This paper introduces CCMusic, an open and diverse database comprising multiple datasets specifically designed for tasks related to Chinese music, highlighting our focus on this culturally rich domain. The database integrates both published and unpublished datasets, with steps taken such as data cleaning, label refinement, and data structure unification to ensure data consistency and create ready-to-use versions. We conduct benchmark evaluations for all datasets using a unified evaluation framework developed specifically for this purpose. This publicly available framework supports both classification and detection tasks, ensuring standardized and reproducible results across all datasets. The database is hosted on HuggingFace and ModelScope, two open and multifunctional data and model hosting platforms, ensuring ease of accessibility and usability.
Towards Robust and Truly Large-Scale Audio-Sheet Music Retrieval
A range of applications of multi-modal music information retrieval is centred around the problem of connecting large collections of sheet music (images) to corresponding audio recordings, that is, identifying pairs of audio and score excerpts that refer to the same musical content. One of the typical and most recent approaches to this task employs cross-modal deep learning architectures to learn joint embedding spaces that link the two distinct modalities - audio and sheet music images. While there has been steady improvement on this front over the past years, a number of open problems still prevent large-scale employment of this methodology. In this article we attempt to provide an insightful examination of the current developments on audio-sheet music retrieval via deep learning methods. We first identify a set of main challenges on the road towards robust and large-scale cross-modal music retrieval in real scenarios. We then highlight the steps we have taken so far to address some of these challenges, documenting step-by-step improvement along several dimensions. We conclude by analysing the remaining challenges and present ideas for solving these, in order to pave the way to a unified and robust methodology for cross-modal music retrieval.
Evaluation of CNN-based Automatic Music Tagging Models
Recent advances in deep learning accelerated the development of content-based automatic music tagging systems. Music information retrieval (MIR) researchers proposed various architecture designs, mainly based on convolutional neural networks (CNNs), that achieve state-of-the-art results in this multi-label binary classification task. However, due to the differences in experimental setups followed by researchers, such as using different dataset splits and software versions for evaluation, it is difficult to compare the proposed architectures directly with each other. To facilitate further research, in this paper we conduct a consistent evaluation of different music tagging models on three datasets (MagnaTagATune, Million Song Dataset, and MTG-Jamendo) and provide reference results using common evaluation metrics (ROC-AUC and PR-AUC). Furthermore, all the models are evaluated with perturbed inputs to investigate the generalization capabilities concerning time stretch, pitch shift, dynamic range compression, and addition of white noise. For reproducibility, we provide the PyTorch implementations with the pre-trained models.
Advancing the Foundation Model for Music Understanding
The field of Music Information Retrieval (MIR) is fragmented, with specialized models excelling at isolated tasks. In this work, we challenge this paradigm by introducing a unified foundation model named MuFun for holistic music understanding. Our model features a novel architecture that jointly processes instrumental and lyrical content, and is trained on a large-scale dataset covering diverse tasks such as genre classification, music tagging, and question answering. To facilitate robust evaluation, we also propose a new benchmark for multi-faceted music understanding called MuCUE (Music Comprehensive Understanding Evaluation). Experiments show our model significantly outperforms existing audio large language models across the MuCUE tasks, demonstrating its state-of-the-art effectiveness and generalization ability.
The GigaMIDI Dataset with Features for Expressive Music Performance Detection
The Musical Instrument Digital Interface (MIDI), introduced in 1983, revolutionized music production by allowing computers and instruments to communicate efficiently. MIDI files encode musical instructions compactly, facilitating convenient music sharing. They benefit Music Information Retrieval (MIR), aiding in research on music understanding, computational musicology, and generative music. The GigaMIDI dataset contains over 1.4 million unique MIDI files, encompassing 1.8 billion MIDI note events and over 5.3 million MIDI tracks. GigaMIDI is currently the largest collection of symbolic music in MIDI format available for research purposes under fair dealing. Distinguishing between non-expressive and expressive MIDI tracks is challenging, as MIDI files do not inherently make this distinction. To address this issue, we introduce a set of innovative heuristics for detecting expressive music performance. These include the Distinctive Note Velocity Ratio (DNVR) heuristic, which analyzes MIDI note velocity; the Distinctive Note Onset Deviation Ratio (DNODR) heuristic, which examines deviations in note onset times; and the Note Onset Median Metric Level (NOMML) heuristic, which evaluates onset positions relative to metric levels. Our evaluation demonstrates these heuristics effectively differentiate between non-expressive and expressive MIDI tracks. Furthermore, after evaluation, we create the most substantial expressive MIDI dataset, employing our heuristic, NOMML. This curated iteration of GigaMIDI encompasses expressively-performed instrument tracks detected by NOMML, containing all General MIDI instruments, constituting 31% of the GigaMIDI dataset, totalling 1,655,649 tracks.
Predicting performance difficulty from piano sheet music images
Estimating the performance difficulty of a musical score is crucial in music education for adequately designing the learning curriculum of the students. Although the Music Information Retrieval community has recently shown interest in this task, existing approaches mainly use machine-readable scores, leaving the broader case of sheet music images unaddressed. Based on previous works involving sheet music images, we use a mid-level representation, bootleg score, describing notehead positions relative to staff lines coupled with a transformer model. This architecture is adapted to our task by introducing an encoding scheme that reduces the encoded sequence length to one-eighth of the original size. In terms of evaluation, we consider five datasets -- more than 7500 scores with up to 9 difficulty levels -- , two of them particularly compiled for this work. The results obtained when pretraining the scheme on the IMSLP corpus and fine-tuning it on the considered datasets prove the proposal's validity, achieving the best-performing model with a balanced accuracy of 40.34\% and a mean square error of 1.33. Finally, we provide access to our code, data, and models for transparency and reproducibility.
Adversarial-MidiBERT: Symbolic Music Understanding Model Based on Unbias Pre-training and Mask Fine-tuning
As an important part of Music Information Retrieval (MIR), Symbolic Music Understanding (SMU) has gained substantial attention, as it can assist musicians and amateurs in learning and creating music. Recently, pre-trained language models have been widely adopted in SMU because the symbolic music shares a huge similarity with natural language, and the pre-trained manner also helps make full use of limited music data. However, the issue of bias, such as sexism, ageism, and racism, has been observed in pre-trained language models, which is attributed to the imbalanced distribution of training data. It also has a significant influence on the performance of downstream tasks, which also happens in SMU. To address this challenge, we propose Adversarial-MidiBERT, a symbolic music understanding model based on Bidirectional Encoder Representations from Transformers (BERT). We introduce an unbiased pre-training method based on adversarial learning to minimize the participation of tokens that lead to biases during training. Furthermore, we propose a mask fine-tuning method to narrow the data gap between pre-training and fine-tuning, which can help the model converge faster and perform better. We evaluate our method on four music understanding tasks, and our approach demonstrates excellent performance in all of them. The code for our model is publicly available at https://github.com/RS2002/Adversarial-MidiBERT.
Iranian Modal Music (Dastgah) detection using deep neural networks
Music classification and genre detection are topics in music information retrieval (MIR) that many articles have been published regarding their utilities in the modern world. However, this contribution is insufficient in non-western music, such as Iranian modal music. In this work, we have implemented several deep neural networks to recognize Iranian modal music in seven highly correlated categories. The best model, BiLGNet, which achieved 92 percent overall accuracy, uses an architecture inspired by autoencoders, including bidirectional LSTM and GRU layers. We trained the models using the Nava dataset, which includes 1786 records and up to 55 hours of music played solo by Kamanche, Tar, Setar, Reed, and Santoor (Dulcimer). We considered Multiple features such as MFCC, Chroma CENS, and Mel spectrogram as input. The results indicate that MFCC carries more valuable information for detecting Iranian modal music (Dastgah) than other sound representations. Moreover, the architecture inspired by autoencoders is robust in distinguishing highly correlated data like Dastgahs. It also shows that because of the precise order in Iranian Dastgah Music, Bidirectional Recurrent networks are more efficient than any other networks that have been implemented in this study.
DeepSRGM -- Sequence Classification and Ranking in Indian Classical Music with Deep Learning
A vital aspect of Indian Classical Music (ICM) is Raga, which serves as a melodic framework for compositions and improvisations alike. Raga Recognition is an important music information retrieval task in ICM as it can aid numerous downstream applications ranging from music recommendations to organizing huge music collections. In this work, we propose a deep learning based approach to Raga recognition. Our approach employs efficient pre possessing and learns temporal sequences in music data using Long Short Term Memory based Recurrent Neural Networks (LSTM-RNN). We train and test the network on smaller sequences sampled from the original audio while the final inference is performed on the audio as a whole. Our method achieves an accuracy of 88.1% and 97 % during inference on the Comp Music Carnatic dataset and its 10 Raga subset respectively making it the state-of-the-art for the Raga recognition task. Our approach also enables sequence ranking which aids us in retrieving melodic patterns from a given music data base that are closely related to the presented query sequence.
Exploiting Music Source Separation for Automatic Lyrics Transcription with Whisper
Automatic lyrics transcription (ALT) remains a challenging task in the field of music information retrieval, despite great advances in automatic speech recognition (ASR) brought about by transformer-based architectures in recent years. One of the major challenges in ALT is the high amplitude of interfering audio signals relative to conventional ASR due to musical accompaniment. Recent advances in music source separation have enabled automatic extraction of high-quality separated vocals, which could potentially improve ALT performance. However, the effect of source separation has not been systematically investigated in order to establish best practices for its use. This work examines the impact of source separation on ALT using Whisper, a state-of-the-art open source ASR model. We evaluate Whisper's performance on original audio, separated vocals, and vocal stems across short-form and long-form transcription tasks. For short-form, we suggest a concatenation method that results in a consistent reduction in Word Error Rate (WER). For long-form, we propose an algorithm using source separation as a vocal activity detector to derive segment boundaries, which results in a consistent reduction in WER relative to Whisper's native long-form algorithm. Our approach achieves state-of-the-art results for an open source system on the Jam-ALT long-form ALT benchmark, without any training or fine-tuning. We also publish MUSDB-ALT, the first dataset of long-form lyric transcripts following the Jam-ALT guidelines for which vocal stems are publicly available.
Do Music Generation Models Encode Music Theory?
Music foundation models possess impressive music generation capabilities. When people compose music, they may infuse their understanding of music into their work, by using notes and intervals to craft melodies, chords to build progressions, and tempo to create a rhythmic feel. To what extent is this true of music generation models? More specifically, are fundamental Western music theory concepts observable within the "inner workings" of these models? Recent work proposed leveraging latent audio representations from music generation models towards music information retrieval tasks (e.g. genre classification, emotion recognition), which suggests that high-level musical characteristics are encoded within these models. However, probing individual music theory concepts (e.g. tempo, pitch class, chord quality) remains under-explored. Thus, we introduce SynTheory, a synthetic MIDI and audio music theory dataset, consisting of tempos, time signatures, notes, intervals, scales, chords, and chord progressions concepts. We then propose a framework to probe for these music theory concepts in music foundation models (Jukebox and MusicGen) and assess how strongly they encode these concepts within their internal representations. Our findings suggest that music theory concepts are discernible within foundation models and that the degree to which they are detectable varies by model size and layer.
Partitura: A Python Package for Symbolic Music Processing
Partitura is a lightweight Python package for handling symbolic musical information. It provides easy access to features commonly used in music information retrieval tasks, like note arrays (lists of timed pitched events) and 2D piano roll matrices, as well as other score elements such as time and key signatures, performance directives, and repeat structures. Partitura can load musical scores (in MEI, MusicXML, Kern, and MIDI formats), MIDI performances, and score-to-performance alignments. The package includes some tools for music analysis, such as automatic pitch spelling, key signature identification, and voice separation. Partitura is an open-source project and is available at https://github.com/CPJKU/partitura/.
A Novel Multimodal Music Genre Classifier using Hierarchical Attention and Convolutional Neural Network
Music genre classification is one of the trending topics in regards to the current Music Information Retrieval (MIR) Research. Since, the dependency of genre is not only limited to the audio profile, we also make use of textual content provided as lyrics of the corresponding song. We implemented a CNN based feature extractor for spectrograms in order to incorporate the acoustic features and a Hierarchical Attention Network based feature extractor for lyrics. We then go on to classify the music track based upon the resulting fused feature vector.
Improving Music Genre Classification from Multi-Modal Properties of Music and Genre Correlations Perspective
Music genre classification has been widely studied in past few years for its various applications in music information retrieval. Previous works tend to perform unsatisfactorily, since those methods only use audio content or jointly use audio content and lyrics content inefficiently. In addition, as genres normally co-occur in a music track, it is desirable to capture and model the genre correlations to improve the performance of multi-label music genre classification. To solve these issues, we present a novel multi-modal method leveraging audio-lyrics contrastive loss and two symmetric cross-modal attention, to align and fuse features from audio and lyrics. Furthermore, based on the nature of the multi-label classification, a genre correlations extraction module is presented to capture and model potential genre correlations. Extensive experiments demonstrate that our proposed method significantly surpasses other multi-label music genre classification methods and achieves state-of-the-art result on Music4All dataset.
The Music Streaming Sessions Dataset
At the core of many important machine learning problems faced by online streaming services is a need to model how users interact with the content they are served. Unfortunately, there are no public datasets currently available that enable researchers to explore this topic. In order to spur that research, we release the Music Streaming Sessions Dataset (MSSD), which consists of 160 million listening sessions and associated user actions. Furthermore, we provide audio features and metadata for the approximately 3.7 million unique tracks referred to in the logs. This is the largest collection of such track metadata currently available to the public. This dataset enables research on important problems including how to model user listening and interaction behaviour in streaming, as well as Music Information Retrieval (MIR), and session-based sequential recommendations. Additionally, a subset of sessions were collected using a uniformly random recommendation setting, enabling their use for counterfactual evaluation of such sequential recommendations. Finally, we provide an analysis of user behavior and suggest further research problems which can be addressed using the dataset.
StemGen: A music generation model that listens
End-to-end generation of musical audio using deep learning techniques has seen an explosion of activity recently. However, most models concentrate on generating fully mixed music in response to abstract conditioning information. In this work, we present an alternative paradigm for producing music generation models that can listen and respond to musical context. We describe how such a model can be constructed using a non-autoregressive, transformer-based model architecture and present a number of novel architectural and sampling improvements. We train the described architecture on both an open-source and a proprietary dataset. We evaluate the produced models using standard quality metrics and a new approach based on music information retrieval descriptors. The resulting model reaches the audio quality of state-of-the-art text-conditioned models, as well as exhibiting strong musical coherence with its context.
Symbolic & Acoustic: Multi-domain Music Emotion Modeling for Instrumental Music
Music Emotion Recognition involves the automatic identification of emotional elements within music tracks, and it has garnered significant attention due to its broad applicability in the field of Music Information Retrieval. It can also be used as the upstream task of many other human-related tasks such as emotional music generation and music recommendation. Due to existing psychology research, music emotion is determined by multiple factors such as the Timbre, Velocity, and Structure of the music. Incorporating multiple factors in MER helps achieve more interpretable and finer-grained methods. However, most prior works were uni-domain and showed weak consistency between arousal modeling performance and valence modeling performance. Based on this background, we designed a multi-domain emotion modeling method for instrumental music that combines symbolic analysis and acoustic analysis. At the same time, because of the rarity of music data and the difficulty of labeling, our multi-domain approach can make full use of limited data. Our approach was implemented and assessed using the publicly available piano dataset EMOPIA, resulting in a notable improvement over our baseline model with a 2.4% increase in overall accuracy, establishing its state-of-the-art performance.
CMI-Bench: A Comprehensive Benchmark for Evaluating Music Instruction Following
Recent advances in audio-text large language models (LLMs) have opened new possibilities for music understanding and generation. However, existing benchmarks are limited in scope, often relying on simplified tasks or multi-choice evaluations that fail to reflect the complexity of real-world music analysis. We reinterpret a broad range of traditional MIR annotations as instruction-following formats and introduce CMI-Bench, a comprehensive music instruction following benchmark designed to evaluate audio-text LLMs on a diverse set of music information retrieval (MIR) tasks. These include genre classification, emotion regression, emotion tagging, instrument classification, pitch estimation, key detection, lyrics transcription, melody extraction, vocal technique recognition, instrument performance technique detection, music tagging, music captioning, and (down)beat tracking: reflecting core challenges in MIR research. Unlike previous benchmarks, CMI-Bench adopts standardized evaluation metrics consistent with previous state-of-the-art MIR models, ensuring direct comparability with supervised approaches. We provide an evaluation toolkit supporting all open-source audio-textual LLMs, including LTU, Qwen-audio, SALMONN, MusiLingo, etc. Experiment results reveal significant performance gaps between LLMs and supervised models, along with their culture, chronological and gender bias, highlighting the potential and limitations of current models in addressing MIR tasks. CMI-Bench establishes a unified foundation for evaluating music instruction following, driving progress in music-aware LLMs.
LargeSHS: A large-scale dataset of music adaptation
Recent advances in AI-based music generation have focused heavily on text-conditioned models, with less attention given to reference-based generation such as song adaptation. To support this line of research, we introduce LargeSHS, a large-scale dataset derived from SecondHandSongs, containing over 1.7 million metadata entries and approximately 900k publicly accessible audio links. Unlike existing datasets, LargeSHS includes structured adaptation relationships between musical works, enabling the construction of adaptation trees and performance clusters that represent cover song families. We provide comprehensive statistics and comparisons with existing datasets, highlighting the unique scale and richness of LargeSHS. This dataset paves the way for new research in cover song generation, reference-based music generation, and adaptation-aware MIR tasks.
MuChin: A Chinese Colloquial Description Benchmark for Evaluating Language Models in the Field of Music
The rapidly evolving multimodal Large Language Models (LLMs) urgently require new benchmarks to uniformly evaluate their performance on understanding and textually describing music. However, due to semantic gaps between Music Information Retrieval (MIR) algorithms and human understanding, discrepancies between professionals and the public, and low precision of annotations, existing music description datasets cannot serve as benchmarks. To this end, we present MuChin, the first open-source music description benchmark in Chinese colloquial language, designed to evaluate the performance of multimodal LLMs in understanding and describing music. We established the Caichong Music Annotation Platform (CaiMAP) that employs an innovative multi-person, multi-stage assurance method, and recruited both amateurs and professionals to ensure the precision of annotations and alignment with popular semantics. Utilizing this method, we built a dataset with multi-dimensional, high-precision music annotations, the Caichong Music Dataset (CaiMD), and carefully selected 1,000 high-quality entries to serve as the test set for MuChin. Based on MuChin, we analyzed the discrepancies between professionals and amateurs in terms of music description, and empirically demonstrated the effectiveness of annotated data for fine-tuning LLMs. Ultimately, we employed MuChin to evaluate existing music understanding models on their ability to provide colloquial descriptions of music. All data related to the benchmark, along with the scoring code and detailed appendices, have been open-sourced (https://github.com/CarlWangChina/MuChin/).
A Study on Broadcast Networks for Music Genre Classification
Due to the increased demand for music streaming/recommender services and the recent developments of music information retrieval frameworks, Music Genre Classification (MGC) has attracted the community's attention. However, convolutional-based approaches are known to lack the ability to efficiently encode and localize temporal features. In this paper, we study the broadcast-based neural networks aiming to improve the localization and generalizability under a small set of parameters (about 180k) and investigate twelve variants of broadcast networks discussing the effect of block configuration, pooling method, activation function, normalization mechanism, label smoothing, channel interdependency, LSTM block inclusion, and variants of inception schemes. Our computational experiments using relevant datasets such as GTZAN, Extended Ballroom, HOMBURG, and Free Music Archive (FMA) show state-of-the-art classification accuracies in Music Genre Classification. Our approach offers insights and the potential to enable compact and generalizable broadcast networks for music and audio classification.
Toward Interpretable Music Tagging with Self-Attention
Self-attention is an attention mechanism that learns a representation by relating different positions in the sequence. The transformer, which is a sequence model solely based on self-attention, and its variants achieved state-of-the-art results in many natural language processing tasks. Since music composes its semantics based on the relations between components in sparse positions, adopting the self-attention mechanism to solve music information retrieval (MIR) problems can be beneficial. Hence, we propose a self-attention based deep sequence model for music tagging. The proposed architecture consists of shallow convolutional layers followed by stacked Transformer encoders. Compared to conventional approaches using fully convolutional or recurrent neural networks, our model is more interpretable while reporting competitive results. We validate the performance of our model with the MagnaTagATune and the Million Song Dataset. In addition, we demonstrate the interpretability of the proposed architecture with a heat map visualization.
Personalized Dynamic Music Emotion Recognition with Dual-Scale Attention-Based Meta-Learning
Dynamic Music Emotion Recognition (DMER) aims to predict the emotion of different moments in music, playing a crucial role in music information retrieval. The existing DMER methods struggle to capture long-term dependencies when dealing with sequence data, which limits their performance. Furthermore, these methods often overlook the influence of individual differences on emotion perception, even though everyone has their own personalized emotional perception in the real world. Motivated by these issues, we explore more effective sequence processing methods and introduce the Personalized DMER (PDMER) problem, which requires models to predict emotions that align with personalized perception. Specifically, we propose a Dual-Scale Attention-Based Meta-Learning (DSAML) method. This method fuses features from a dual-scale feature extractor and captures both short and long-term dependencies using a dual-scale attention transformer, improving the performance in traditional DMER. To achieve PDMER, we design a novel task construction strategy that divides tasks by annotators. Samples in a task are annotated by the same annotator, ensuring consistent perception. Leveraging this strategy alongside meta-learning, DSAML can predict personalized perception of emotions with just one personalized annotation sample. Our objective and subjective experiments demonstrate that our method can achieve state-of-the-art performance in both traditional DMER and PDMER.
WikiMuTe: A web-sourced dataset of semantic descriptions for music audio
Multi-modal deep learning techniques for matching free-form text with music have shown promising results in the field of Music Information Retrieval (MIR). Prior work is often based on large proprietary data while publicly available datasets are few and small in size. In this study, we present WikiMuTe, a new and open dataset containing rich semantic descriptions of music. The data is sourced from Wikipedia's rich catalogue of articles covering musical works. Using a dedicated text-mining pipeline, we extract both long and short-form descriptions covering a wide range of topics related to music content such as genre, style, mood, instrumentation, and tempo. To show the use of this data, we train a model that jointly learns text and audio representations and performs cross-modal retrieval. The model is evaluated on two tasks: tag-based music retrieval and music auto-tagging. The results show that while our approach has state-of-the-art performance on multiple tasks, but still observe a difference in performance depending on the data used for training.
Musical Word Embedding: Bridging the Gap between Listening Contexts and Music
Word embedding pioneered by Mikolov et al. is a staple technique for word representations in natural language processing (NLP) research which has also found popularity in music information retrieval tasks. Depending on the type of text data for word embedding, however, vocabulary size and the degree of musical pertinence can significantly vary. In this work, we (1) train the distributed representation of words using combinations of both general text data and music-specific data and (2) evaluate the system in terms of how they associate listening contexts with musical compositions.
FMA: A Dataset For Music Analysis
We introduce the Free Music Archive (FMA), an open and easily accessible dataset suitable for evaluating several tasks in MIR, a field concerned with browsing, searching, and organizing large music collections. The community's growing interest in feature and end-to-end learning is however restrained by the limited availability of large audio datasets. The FMA aims to overcome this hurdle by providing 917 GiB and 343 days of Creative Commons-licensed audio from 106,574 tracks from 16,341 artists and 14,854 albums, arranged in a hierarchical taxonomy of 161 genres. It provides full-length and high-quality audio, pre-computed features, together with track- and user-level metadata, tags, and free-form text such as biographies. We here describe the dataset and how it was created, propose a train/validation/test split and three subsets, discuss some suitable MIR tasks, and evaluate some baselines for genre recognition. Code, data, and usage examples are available at https://github.com/mdeff/fma
OMAR-RQ: Open Music Audio Representation Model Trained with Multi-Feature Masked Token Prediction
Developing open-source foundation models is essential for advancing research in music audio understanding and ensuring access to powerful, multipurpose representations for music information retrieval. We present OMAR-RQ, a model trained with self-supervision via masked token classification methodologies using a large-scale dataset with over 330,000 hours of music audio. We experiment with different input features and quantization options, and achieve state-of-the-art performance in music tagging, pitch estimation, chord recognition, beat tracking, segmentation, and difficulty estimation among open self-supervised models. We open-source our training and evaluation pipelines and model weights, available at https://github.com/mtg/omar-rq.
Mustango: Toward Controllable Text-to-Music Generation
With recent advancements in text-to-audio and text-to-music based on latent diffusion models, the quality of generated content has been reaching new heights. The controllability of musical aspects, however, has not been explicitly explored in text-to-music systems yet. In this paper, we present Mustango, a music-domain-knowledge-inspired text-to-music system based on diffusion, that expands the Tango text-to-audio model. Mustango aims to control the generated music, not only with general text captions, but from more rich captions that could include specific instructions related to chords, beats, tempo, and key. As part of Mustango, we propose MuNet, a Music-Domain-Knowledge-Informed UNet sub-module to integrate these music-specific features, which we predict from the text prompt, as well as the general text embedding, into the diffusion denoising process. To overcome the limited availability of open datasets of music with text captions, we propose a novel data augmentation method that includes altering the harmonic, rhythmic, and dynamic aspects of music audio and using state-of-the-art Music Information Retrieval methods to extract the music features which will then be appended to the existing descriptions in text format. We release the resulting MusicBench dataset which contains over 52K instances and includes music-theory-based descriptions in the caption text. Through extensive experiments, we show that the quality of the music generated by Mustango is state-of-the-art, and the controllability through music-specific text prompts greatly outperforms other models in terms of desired chords, beat, key, and tempo, on multiple datasets.
Investigation of Singing Voice Separation for Singing Voice Detection in Polyphonic Music
Singing voice detection (SVD), to recognize vocal parts in the song, is an essential task in music information retrieval (MIR). The task remains challenging since singing voice varies and intertwines with the accompaniment music, especially for some complicated polyphonic music such as choral music recordings. To address this problem, we investigate singing voice detection while discarding the interference from the accompaniment. The proposed SVD has two steps: i. The singing voice separation (SVS) technique is first utilized to filter out the singing voice's potential part coarsely. ii. Upon the continuity of vocal in the time domain, Long-term Recurrent Convolutional Networks (LRCN) is used to learn compositional features. Moreover, to eliminate the outliers, we choose to use a median filter for time-domain smoothing. Experimental results show that the proposed method outperforms the existing state-of-the-art works on two public datasets, the Jamendo Corpus and the RWC pop dataset.
Fretting-Transformer: Encoder-Decoder Model for MIDI to Tablature Transcription
Music transcription plays a pivotal role in Music Information Retrieval (MIR), particularly for stringed instruments like the guitar, where symbolic music notations such as MIDI lack crucial playability information. This contribution introduces the Fretting-Transformer, an encoderdecoder model that utilizes a T5 transformer architecture to automate the transcription of MIDI sequences into guitar tablature. By framing the task as a symbolic translation problem, the model addresses key challenges, including string-fret ambiguity and physical playability. The proposed system leverages diverse datasets, including DadaGP, GuitarToday, and Leduc, with novel data pre-processing and tokenization strategies. We have developed metrics for tablature accuracy and playability to quantitatively evaluate the performance. The experimental results demonstrate that the Fretting-Transformer surpasses baseline methods like A* and commercial applications like Guitar Pro. The integration of context-sensitive processing and tuning/capo conditioning further enhances the model's performance, laying a robust foundation for future developments in automated guitar transcription.
Singing Voice Separation Using a Deep Convolutional Neural Network Trained by Ideal Binary Mask and Cross Entropy
Separating a singing voice from its music accompaniment remains an important challenge in the field of music information retrieval. We present a unique neural network approach inspired by a technique that has revolutionized the field of vision: pixel-wise image classification, which we combine with cross entropy loss and pretraining of the CNN as an autoencoder on singing voice spectrograms. The pixel-wise classification technique directly estimates the sound source label for each time-frequency (T-F) bin in our spectrogram image, thus eliminating common pre- and postprocessing tasks. The proposed network is trained by using the Ideal Binary Mask (IBM) as the target output label. The IBM identifies the dominant sound source in each T-F bin of the magnitude spectrogram of a mixture signal, by considering each T-F bin as a pixel with a multi-label (for each sound source). Cross entropy is used as the training objective, so as to minimize the average probability error between the target and predicted label for each pixel. By treating the singing voice separation problem as a pixel-wise classification task, we additionally eliminate one of the commonly used, yet not easy to comprehend, postprocessing steps: the Wiener filter postprocessing. The proposed CNN outperforms the first runner up in the Music Information Retrieval Evaluation eXchange (MIREX) 2016 and the winner of MIREX 2014 with a gain of 2.2702 ~ 5.9563 dB global normalized source to distortion ratio (GNSDR) when applied to the iKala dataset. An experiment with the DSD100 dataset on the full-tracks song evaluation task also shows that our model is able to compete with cutting-edge singing voice separation systems which use multi-channel modeling, data augmentation, and model blending.
PianoVAM: A Multimodal Piano Performance Dataset
The multimodal nature of music performance has driven increasing interest in data beyond the audio domain within the music information retrieval (MIR) community. This paper introduces PianoVAM, a comprehensive piano performance dataset that includes videos, audio, MIDI, hand landmarks, fingering labels, and rich metadata. The dataset was recorded using a Disklavier piano, capturing audio and MIDI from amateur pianists during their daily practice sessions, alongside synchronized top-view videos in realistic and varied performance conditions. Hand landmarks and fingering labels were extracted using a pretrained hand pose estimation model and a semi-automated fingering annotation algorithm. We discuss the challenges encountered during data collection and the alignment process across different modalities. Additionally, we describe our fingering annotation method based on hand landmarks extracted from videos. Finally, we present benchmarking results for both audio-only and audio-visual piano transcription using the PianoVAM dataset and discuss additional potential applications.
CoLLAP: Contrastive Long-form Language-Audio Pretraining with Musical Temporal Structure Augmentation
Modeling temporal characteristics plays a significant role in the representation learning of audio waveform. We propose Contrastive Long-form Language-Audio Pretraining (CoLLAP) to significantly extend the perception window for both the input audio (up to 5 minutes) and the language descriptions (exceeding 250 words), while enabling contrastive learning across modalities and temporal dynamics. Leveraging recent Music-LLMs to generate long-form music captions for full-length songs, augmented with musical temporal structures, we collect 51.3K audio-text pairs derived from the large-scale AudioSet training dataset, where the average audio length reaches 288 seconds. We propose a novel contrastive learning architecture that fuses language representations with structured audio representations by segmenting each song into clips and extracting their embeddings. With an attention mechanism, we capture multimodal temporal correlations, allowing the model to automatically weigh and enhance the final fusion score for improved contrastive alignment. Finally, we develop two variants of the CoLLAP model with different types of backbone language models. Through comprehensive experiments on multiple long-form music-text retrieval datasets, we demonstrate consistent performance improvement in retrieval accuracy compared with baselines. We also show the pretrained CoLLAP models can be transferred to various music information retrieval tasks, with heterogeneous long-form multimodal contexts.
Music2Latent: Consistency Autoencoders for Latent Audio Compression
Efficient audio representations in a compressed continuous latent space are critical for generative audio modeling and Music Information Retrieval (MIR) tasks. However, some existing audio autoencoders have limitations, such as multi-stage training procedures, slow iterative sampling, or low reconstruction quality. We introduce Music2Latent, an audio autoencoder that overcomes these limitations by leveraging consistency models. Music2Latent encodes samples into a compressed continuous latent space in a single end-to-end training process while enabling high-fidelity single-step reconstruction. Key innovations include conditioning the consistency model on upsampled encoder outputs at all levels through cross connections, using frequency-wise self-attention to capture long-range frequency dependencies, and employing frequency-wise learned scaling to handle varying value distributions across frequencies at different noise levels. We demonstrate that Music2Latent outperforms existing continuous audio autoencoders in sound quality and reconstruction accuracy while achieving competitive performance on downstream MIR tasks using its latent representations. To our knowledge, this represents the first successful attempt at training an end-to-end consistency autoencoder model.
All-In-One Metrical And Functional Structure Analysis With Neighborhood Attentions on Demixed Audio
Music is characterized by complex hierarchical structures. Developing a comprehensive model to capture these structures has been a significant challenge in the field of Music Information Retrieval (MIR). Prior research has mainly focused on addressing individual tasks for specific hierarchical levels, rather than providing a unified approach. In this paper, we introduce a versatile, all-in-one model that jointly performs beat and downbeat tracking as well as functional structure segmentation and labeling. The model leverages source-separated spectrograms as inputs and employs dilated neighborhood attentions to capture temporal long-term dependencies, along with non-dilated attentions for local instrumental dependencies. Consequently, the proposed model achieves state-of-the-art performance in all four tasks on the Harmonix Set while maintaining a relatively lower number of parameters compared to recent state-of-the-art models. Furthermore, our ablation study demonstrates that the concurrent learning of beats, downbeats, and segments can lead to enhanced performance, with each task mutually benefiting from the others.
MidiCaps -- A large-scale MIDI dataset with text captions
Generative models guided by text prompts are increasingly becoming more popular. However, no text-to-MIDI models currently exist, mostly due to the lack of a captioned MIDI dataset. This work aims to enable research that combines LLMs with symbolic music by presenting the first large-scale MIDI dataset with text captions that is openly available: MidiCaps. MIDI (Musical Instrument Digital Interface) files are a widely used format for encoding musical information. Their structured format captures the nuances of musical composition and has practical applications by music producers, composers, musicologists, as well as performers. Inspired by recent advancements in captioning techniques applied to various domains, we present a large-scale curated dataset of over 168k MIDI files accompanied by textual descriptions. Each MIDI caption succinctly describes the musical content, encompassing tempo, chord progression, time signature, instruments present, genre and mood; thereby facilitating multi-modal exploration and analysis. The dataset contains a mix of various genres, styles, and complexities, offering a rich source for training and evaluating models for tasks such as music information retrieval, music understanding and cross-modal translation. We provide detailed statistics about the dataset and have assessed the quality of the captions in an extensive listening study. We anticipate that this resource will stimulate further research in the intersection of music and natural language processing, fostering advancements in both fields.
Music2Latent2: Audio Compression with Summary Embeddings and Autoregressive Decoding
Efficiently compressing high-dimensional audio signals into a compact and informative latent space is crucial for various tasks, including generative modeling and music information retrieval (MIR). Existing audio autoencoders, however, often struggle to achieve high compression ratios while preserving audio fidelity and facilitating efficient downstream applications. We introduce Music2Latent2, a novel audio autoencoder that addresses these limitations by leveraging consistency models and a novel approach to representation learning based on unordered latent embeddings, which we call summary embeddings. Unlike conventional methods that encode local audio features into ordered sequences, Music2Latent2 compresses audio signals into sets of summary embeddings, where each embedding can capture distinct global features of the input sample. This enables to achieve higher reconstruction quality at the same compression ratio. To handle arbitrary audio lengths, Music2Latent2 employs an autoregressive consistency model trained on two consecutive audio chunks with causal masking, ensuring coherent reconstruction across segment boundaries. Additionally, we propose a novel two-step decoding procedure that leverages the denoising capabilities of consistency models to further refine the generated audio at no additional cost. Our experiments demonstrate that Music2Latent2 outperforms existing continuous audio autoencoders regarding audio quality and performance on downstream tasks. Music2Latent2 paves the way for new possibilities in audio compression.
ChoralSynth: Synthetic Dataset of Choral Singing
Choral singing, a widely practiced form of ensemble singing, lacks comprehensive datasets in the realm of Music Information Retrieval (MIR) research, due to challenges arising from the requirement to curate multitrack recordings. To address this, we devised a novel methodology, leveraging state-of-the-art synthesizers to create and curate quality renditions. The scores were sourced from Choral Public Domain Library(CPDL). This work is done in collaboration with a diverse team of musicians, software engineers and researchers. The resulting dataset, complete with its associated metadata, and methodology is released as part of this work, opening up new avenues for exploration and advancement in the field of singing voice research.
Melody-Lyrics Matching with Contrastive Alignment Loss
The connection between music and lyrics is far beyond semantic bonds. Conceptual pairs in the two modalities such as rhythm and rhyme, note duration and syllabic stress, and structure correspondence, raise a compelling yet seldom-explored direction in the field of music information retrieval. In this paper, we present melody-lyrics matching (MLM), a new task which retrieves potential lyrics for a given symbolic melody from text sources. Rather than generating lyrics from scratch, MLM essentially exploits the relationships between melody and lyrics. We propose a self-supervised representation learning framework with contrastive alignment loss for melody and lyrics. This has the potential to leverage the abundance of existing songs with paired melody and lyrics. No alignment annotations are required. Additionally, we introduce sylphone, a novel representation for lyrics at syllable-level activated by phoneme identity and vowel stress. We demonstrate that our method can match melody with coherent and singable lyrics with empirical results and intuitive examples. We open source code and provide matching examples on the companion webpage: https://github.com/changhongw/mlm.
S-KEY: Self-supervised Learning of Major and Minor Keys from Audio
STONE, the current method in self-supervised learning for tonality estimation in music signals, cannot distinguish relative keys, such as C major versus A minor. In this article, we extend the neural network architecture and learning objective of STONE to perform self-supervised learning of major and minor keys (S-KEY). Our main contribution is an auxiliary pretext task to STONE, formulated using transposition-invariant chroma features as a source of pseudo-labels. S-KEY matches the supervised state of the art in tonality estimation on FMAKv2 and GTZAN datasets while requiring no human annotation and having the same parameter budget as STONE. We build upon this result and expand the training set of S-KEY to a million songs, thus showing the potential of large-scale self-supervised learning in music information retrieval.
CREPE: A Convolutional Representation for Pitch Estimation
The task of estimating the fundamental frequency of a monophonic sound recording, also known as pitch tracking, is fundamental to audio processing with multiple applications in speech processing and music information retrieval. To date, the best performing techniques, such as the pYIN algorithm, are based on a combination of DSP pipelines and heuristics. While such techniques perform very well on average, there remain many cases in which they fail to correctly estimate the pitch. In this paper, we propose a data-driven pitch tracking algorithm, CREPE, which is based on a deep convolutional neural network that operates directly on the time-domain waveform. We show that the proposed model produces state-of-the-art results, performing equally or better than pYIN. Furthermore, we evaluate the model's generalizability in terms of noise robustness. A pre-trained version of CREPE is made freely available as an open-source Python module for easy application.
Musical Word Embedding for Music Tagging and Retrieval
Word embedding has become an essential means for text-based information retrieval. Typically, word embeddings are learned from large quantities of general and unstructured text data. However, in the domain of music, the word embedding may have difficulty understanding musical contexts or recognizing music-related entities like artists and tracks. To address this issue, we propose a new approach called Musical Word Embedding (MWE), which involves learning from various types of texts, including both everyday and music-related vocabulary. We integrate MWE into an audio-word joint representation framework for tagging and retrieving music, using words like tag, artist, and track that have different levels of musical specificity. Our experiments show that using a more specific musical word like track results in better retrieval performance, while using a less specific term like tag leads to better tagging performance. To balance this compromise, we suggest multi-prototype training that uses words with different levels of musical specificity jointly. We evaluate both word embedding and audio-word joint embedding on four tasks (tag rank prediction, music tagging, query-by-tag, and query-by-track) across two datasets (Million Song Dataset and MTG-Jamendo). Our findings show that the suggested MWE is more efficient and robust than the conventional word embedding.
Semi-Supervised Contrastive Learning for Controllable Video-to-Music Retrieval
Content creators often use music to enhance their videos, from soundtracks in movies to background music in video blogs and social media content. However, identifying the best music for a video can be a difficult and time-consuming task. To address this challenge, we propose a novel framework for automatically retrieving a matching music clip for a given video, and vice versa. Our approach leverages annotated music labels, as well as the inherent artistic correspondence between visual and music elements. Distinct from previous cross-modal music retrieval works, our method combines both self-supervised and supervised training objectives. We use self-supervised and label-supervised contrastive learning to train a joint embedding space between music and video. We show the effectiveness of our approach by using music genre labels for the supervised training component, and our framework can be generalized to other music annotations (e.g., emotion, instrument, etc.). Furthermore, our method enables fine-grained control over how much the retrieval process focuses on self-supervised vs. label information at inference time. We evaluate the learned embeddings through a variety of video-to-music and music-to-video retrieval tasks. Our experiments show that the proposed approach successfully combines self-supervised and supervised objectives and is effective for controllable music-video retrieval.
A Dataset for Greek Traditional and Folk Music: Lyra
Studying under-represented music traditions under the MIR scope is crucial, not only for developing novel analysis tools, but also for unveiling musical functions that might prove useful in studying world musics. This paper presents a dataset for Greek Traditional and Folk music that includes 1570 pieces, summing in around 80 hours of data. The dataset incorporates YouTube timestamped links for retrieving audio and video, along with rich metadata information with regards to instrumentation, geography and genre, among others. The content has been collected from a Greek documentary series that is available online, where academics present music traditions of Greece with live music and dance performance during the show, along with discussions about social, cultural and musicological aspects of the presented music. Therefore, this procedure has resulted in a significant wealth of descriptions regarding a variety of aspects, such as musical genre, places of origin and musical instruments. In addition, the audio recordings were performed under strict production-level specifications, in terms of recording equipment, leading to very clean and homogeneous audio content. In this work, apart from presenting the dataset in detail, we propose a baseline deep-learning classification approach to recognize the involved musicological attributes. The dataset, the baseline classification methods and the models are provided in public repositories. Future directions for further refining the dataset are also discussed.
