Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCertified $\ell_2$ Attribution Robustness via Uniformly Smoothed Attributions
Model attribution is a popular tool to explain the rationales behind model predictions. However, recent work suggests that the attributions are vulnerable to minute perturbations, which can be added to input samples to fool the attributions while maintaining the prediction outputs. Although empirical studies have shown positive performance via adversarial training, an effective certified defense method is eminently needed to understand the robustness of attributions. In this work, we propose to use uniform smoothing technique that augments the vanilla attributions by noises uniformly sampled from a certain space. It is proved that, for all perturbations within the attack region, the cosine similarity between uniformly smoothed attribution of perturbed sample and the unperturbed sample is guaranteed to be lower bounded. We also derive alternative formulations of the certification that is equivalent to the original one and provides the maximum size of perturbation or the minimum smoothing radius such that the attribution can not be perturbed. We evaluate the proposed method on three datasets and show that the proposed method can effectively protect the attributions from attacks, regardless of the architecture of networks, training schemes and the size of the datasets.
A Practical Upper Bound for the Worst-Case Attribution Deviations
Model attribution is a critical component of deep neural networks (DNNs) for its interpretability to complex models. Recent studies bring up attention to the security of attribution methods as they are vulnerable to attribution attacks that generate similar images with dramatically different attributions. Existing works have been investigating empirically improving the robustness of DNNs against those attacks; however, none of them explicitly quantifies the actual deviations of attributions. In this work, for the first time, a constrained optimization problem is formulated to derive an upper bound that measures the largest dissimilarity of attributions after the samples are perturbed by any noises within a certain region while the classification results remain the same. Based on the formulation, different practical approaches are introduced to bound the attributions above using Euclidean distance and cosine similarity under both ell_2 and ell_infty-norm perturbations constraints. The bounds developed by our theoretical study are validated on various datasets and two different types of attacks (PGD attack and IFIA attribution attack). Over 10 million attacks in the experiments indicate that the proposed upper bounds effectively quantify the robustness of models based on the worst-case attribution dissimilarities.
Axiomatic Attribution for Deep Networks
We study the problem of attributing the prediction of a deep network to its input features, a problem previously studied by several other works. We identify two fundamental axioms---Sensitivity and Implementation Invariance that attribution methods ought to satisfy. We show that they are not satisfied by most known attribution methods, which we consider to be a fundamental weakness of those methods. We use the axioms to guide the design of a new attribution method called Integrated Gradients. Our method requires no modification to the original network and is extremely simple to implement; it just needs a few calls to the standard gradient operator. We apply this method to a couple of image models, a couple of text models and a chemistry model, demonstrating its ability to debug networks, to extract rules from a network, and to enable users to engage with models better.
Towards Better Understanding Attribution Methods
Deep neural networks are very successful on many vision tasks, but hard to interpret due to their black box nature. To overcome this, various post-hoc attribution methods have been proposed to identify image regions most influential to the models' decisions. Evaluating such methods is challenging since no ground truth attributions exist. We thus propose three novel evaluation schemes to more reliably measure the faithfulness of those methods, to make comparisons between them more fair, and to make visual inspection more systematic. To address faithfulness, we propose a novel evaluation setting (DiFull) in which we carefully control which parts of the input can influence the output in order to distinguish possible from impossible attributions. To address fairness, we note that different methods are applied at different layers, which skews any comparison, and so evaluate all methods on the same layers (ML-Att) and discuss how this impacts their performance on quantitative metrics. For more systematic visualizations, we propose a scheme (AggAtt) to qualitatively evaluate the methods on complete datasets. We use these evaluation schemes to study strengths and shortcomings of some widely used attribution methods. Finally, we propose a post-processing smoothing step that significantly improves the performance of some attribution methods, and discuss its applicability.
CoTAR: Chain-of-Thought Attribution Reasoning with Multi-level Granularity
State-of-the-art performance in QA tasks is currently achieved by systems employing Large Language Models (LLMs), however these models tend to hallucinate information in their responses. One approach focuses on enhancing the generation process by incorporating attribution from the given input to the output. However, the challenge of identifying appropriate attributions and verifying their accuracy against a source is a complex task that requires significant improvements in assessing such systems. We introduce an attribution-oriented Chain-of-Thought reasoning method to enhance the accuracy of attributions. This approach focuses the reasoning process on generating an attribution-centric output. Evaluations on two context-enhanced question-answering datasets using GPT-4 demonstrate improved accuracy and correctness of attributions. In addition, the combination of our method with finetuning enhances the response and attribution accuracy of two smaller LLMs, showing their potential to outperform GPT-4 in some cases.
Don't be fooled: label leakage in explanation methods and the importance of their quantitative evaluation
Feature attribution methods identify which features of an input most influence a model's output. Most widely-used feature attribution methods (such as SHAP, LIME, and Grad-CAM) are "class-dependent" methods in that they generate a feature attribution vector as a function of class. In this work, we demonstrate that class-dependent methods can "leak" information about the selected class, making that class appear more likely than it is. Thus, an end user runs the risk of drawing false conclusions when interpreting an explanation generated by a class-dependent method. In contrast, we introduce "distribution-aware" methods, which favor explanations that keep the label's distribution close to its distribution given all features of the input. We introduce SHAP-KL and FastSHAP-KL, two baseline distribution-aware methods that compute Shapley values. Finally, we perform a comprehensive evaluation of seven class-dependent and three distribution-aware methods on three clinical datasets of different high-dimensional data types: images, biosignals, and text.
The effectiveness of feature attribution methods and its correlation with automatic evaluation scores
Explaining the decisions of an Artificial Intelligence (AI) model is increasingly critical in many real-world, high-stake applications. Hundreds of papers have either proposed new feature attribution methods, discussed or harnessed these tools in their work. However, despite humans being the target end-users, most attribution methods were only evaluated on proxy automatic-evaluation metrics (Zhang et al. 2018; Zhou et al. 2016; Petsiuk et al. 2018). In this paper, we conduct the first user study to measure attribution map effectiveness in assisting humans in ImageNet classification and Stanford Dogs fine-grained classification, and when an image is natural or adversarial (i.e., contains adversarial perturbations). Overall, feature attribution is surprisingly not more effective than showing humans nearest training-set examples. On a harder task of fine-grained dog categorization, presenting attribution maps to humans does not help, but instead hurts the performance of human-AI teams compared to AI alone. Importantly, we found automatic attribution-map evaluation measures to correlate poorly with the actual human-AI team performance. Our findings encourage the community to rigorously test their methods on the downstream human-in-the-loop applications and to rethink the existing evaluation metrics.
ClaimVer: Explainable Claim-Level Verification and Evidence Attribution of Text Through Knowledge Graphs
In the midst of widespread misinformation and disinformation through social media and the proliferation of AI-generated texts, it has become increasingly difficult for people to validate and trust information they encounter. Many fact-checking approaches and tools have been developed, but they often lack appropriate explainability or granularity to be useful in various contexts. A text validation method that is easy to use, accessible, and can perform fine-grained evidence attribution has become crucial. More importantly, building user trust in such a method requires presenting the rationale behind each prediction, as research shows this significantly influences people's belief in automated systems. It is also paramount to localize and bring users' attention to the specific problematic content, instead of providing simple blanket labels. In this paper, we present ClaimVer, a human-centric framework tailored to meet users' informational and verification needs by generating rich annotations and thereby reducing cognitive load. Designed to deliver comprehensive evaluations of texts, it highlights each claim, verifies it against a trusted knowledge graph (KG), presents the evidence, and provides succinct, clear explanations for each claim prediction. Finally, our framework introduces an attribution score, enhancing applicability across a wide range of downstream tasks.
Intriguing Properties of Data Attribution on Diffusion Models
Data attribution seeks to trace model outputs back to training data. With the recent development of diffusion models, data attribution has become a desired module to properly assign valuations for high-quality or copyrighted training samples, ensuring that data contributors are fairly compensated or credited. Several theoretically motivated methods have been proposed to implement data attribution, in an effort to improve the trade-off between computational scalability and effectiveness. In this work, we conduct extensive experiments and ablation studies on attributing diffusion models, specifically focusing on DDPMs trained on CIFAR-10 and CelebA, as well as a Stable Diffusion model LoRA-finetuned on ArtBench. Intriguingly, we report counter-intuitive observations that theoretically unjustified design choices for attribution empirically outperform previous baselines by a large margin, in terms of both linear datamodeling score and counterfactual evaluation. Our work presents a significantly more efficient approach for attributing diffusion models, while the unexpected findings suggest that at least in non-convex settings, constructions guided by theoretical assumptions may lead to inferior attribution performance. The code is available at https://github.com/sail-sg/D-TRAK.
SAM: The Sensitivity of Attribution Methods to Hyperparameters
Attribution methods can provide powerful insights into the reasons for a classifier's decision. We argue that a key desideratum of an explanation method is its robustness to input hyperparameters which are often randomly set or empirically tuned. High sensitivity to arbitrary hyperparameter choices does not only impede reproducibility but also questions the correctness of an explanation and impairs the trust of end-users. In this paper, we provide a thorough empirical study on the sensitivity of existing attribution methods. We found an alarming trend that many methods are highly sensitive to changes in their common hyperparameters e.g. even changing a random seed can yield a different explanation! Interestingly, such sensitivity is not reflected in the average explanation accuracy scores over the dataset as commonly reported in the literature. In addition, explanations generated for robust classifiers (i.e. which are trained to be invariant to pixel-wise perturbations) are surprisingly more robust than those generated for regular classifiers.
Enhancing Training Data Attribution with Representational Optimization
Training data attribution (TDA) methods aim to measure how training data impacts a model's predictions. While gradient-based attribution methods, such as influence functions, offer theoretical grounding, their computational costs make them impractical for large-scale applications. Representation-based approaches are far more scalable, but typically rely on heuristic embeddings that are not optimized for attribution, limiting their fidelity. To address these challenges, we propose AirRep, a scalable, representation-based approach that closes this gap by learning task-specific and model-aligned representations optimized explicitly for TDA. AirRep introduces two key innovations: a trainable encoder tuned for attribution quality, and an attention-based pooling mechanism that enables accurate estimation of group-wise influence. We train AirRep using a ranking objective over automatically constructed training subsets labeled by their empirical effect on target predictions. Experiments on instruction-tuned LLMs demonstrate that AirRep achieves performance on par with state-of-the-art gradient-based approaches while being nearly two orders of magnitude more efficient at inference time. Further analysis highlights its robustness and generalization across tasks and models. Our code is available at https://github.com/sunnweiwei/AirRep.
Building Bridges, Not Walls -- Advancing Interpretability by Unifying Feature, Data, and Model Component Attribution
The increasing complexity of AI systems has made understanding their behavior a critical challenge. Numerous methods have been developed to attribute model behavior to three key aspects: input features, training data, and internal model components. However, these attribution methods are studied and applied rather independently, resulting in a fragmented landscape of approaches and terminology. This position paper argues that feature, data, and component attribution methods share fundamental similarities, and bridging them can benefit interpretability research. We conduct a detailed analysis of successful methods across three domains and present a unified view to demonstrate that these seemingly distinct methods employ similar approaches, such as perturbations, gradients, and linear approximations, differing primarily in their perspectives rather than core techniques. Our unified perspective enhances understanding of existing attribution methods, identifies shared concepts and challenges, makes this field more accessible to newcomers, and highlights new directions not only for attribution and interpretability but also for broader AI research, including model editing, steering, and regulation.
Better Understanding Differences in Attribution Methods via Systematic Evaluations
Deep neural networks are very successful on many vision tasks, but hard to interpret due to their black box nature. To overcome this, various post-hoc attribution methods have been proposed to identify image regions most influential to the models' decisions. Evaluating such methods is challenging since no ground truth attributions exist. We thus propose three novel evaluation schemes to more reliably measure the faithfulness of those methods, to make comparisons between them more fair, and to make visual inspection more systematic. To address faithfulness, we propose a novel evaluation setting (DiFull) in which we carefully control which parts of the input can influence the output in order to distinguish possible from impossible attributions. To address fairness, we note that different methods are applied at different layers, which skews any comparison, and so evaluate all methods on the same layers (ML-Att) and discuss how this impacts their performance on quantitative metrics. For more systematic visualizations, we propose a scheme (AggAtt) to qualitatively evaluate the methods on complete datasets. We use these evaluation schemes to study strengths and shortcomings of some widely used attribution methods over a wide range of models. Finally, we propose a post-processing smoothing step that significantly improves the performance of some attribution methods, and discuss its applicability.
Assessment of the Reliablity of a Model's Decision by Generalizing Attribution to the Wavelet Domain
Neural networks have shown remarkable performance in computer vision, but their deployment in numerous scientific and technical fields is challenging due to their black-box nature. Scientists and practitioners need to evaluate the reliability of a decision, i.e., to know simultaneously if a model relies on the relevant features and whether these features are robust to image corruptions. Existing attribution methods aim to provide human-understandable explanations by highlighting important regions in the image domain, but fail to fully characterize a decision process's reliability. To bridge this gap, we introduce the Wavelet sCale Attribution Method (WCAM), a generalization of attribution from the pixel domain to the space-scale domain using wavelet transforms. Attribution in the wavelet domain reveals where {\it and} on what scales the model focuses, thus enabling us to assess whether a decision is reliable.
AtP*: An efficient and scalable method for localizing LLM behaviour to components
Activation Patching is a method of directly computing causal attributions of behavior to model components. However, applying it exhaustively requires a sweep with cost scaling linearly in the number of model components, which can be prohibitively expensive for SoTA Large Language Models (LLMs). We investigate Attribution Patching (AtP), a fast gradient-based approximation to Activation Patching and find two classes of failure modes of AtP which lead to significant false negatives. We propose a variant of AtP called AtP*, with two changes to address these failure modes while retaining scalability. We present the first systematic study of AtP and alternative methods for faster activation patching and show that AtP significantly outperforms all other investigated methods, with AtP* providing further significant improvement. Finally, we provide a method to bound the probability of remaining false negatives of AtP* estimates.
LAQuer: Localized Attribution Queries in Content-grounded Generation
Grounded text generation models often produce content that deviates from their source material, requiring user verification to ensure accuracy. Existing attribution methods associate entire sentences with source documents, which can be overwhelming for users seeking to fact-check specific claims. In contrast, existing sub-sentence attribution methods may be more precise but fail to align with users' interests. In light of these limitations, we introduce Localized Attribution Queries (LAQuer), a new task that localizes selected spans of generated output to their corresponding source spans, allowing fine-grained and user-directed attribution. We compare two approaches for the LAQuer task, including prompting large language models (LLMs) and leveraging LLM internal representations. We then explore a modeling framework that extends existing attributed text generation methods to LAQuer. We evaluate this framework across two grounded text generation tasks: Multi-document Summarization (MDS) and Long-form Question Answering (LFQA). Our findings show that LAQuer methods significantly reduce the length of the attributed text. Our contributions include: (1) proposing the LAQuer task to enhance attribution usability, (2) suggesting a modeling framework and benchmarking multiple baselines, and (3) proposing a new evaluation setting to promote future research on localized attribution in content-grounded generation.
Hybrid Attribution Priors for Explainable and Robust Model Training
Small language models (SLMs) are widely used in tasks that require low latency and lightweight deployment, particularly classification. As interpretability and robustness gain increasing importance, explanation-guided learning has emerged as an effective framework by introducing attribution-based supervision during training; however, deriving general and reliable attribution priors remains a significant challenge. Through an analysis of representative attribution methods in classification settings, we find that although these methods can reliably highlight class-relevant tokens, they often focus on common keywords shared by semantically similar classes. Because such classes are already difficult to distinguish under standard training, these attributions provide insufficient discriminative cues, limiting their ability to improve model differentiation. To overcome this limitation, we propose Class-Aware Attribution Prior (CAP), a novel attribution prior extraction framework that guides language models toward capturing fine-grained class distinctions and producing more salient, discriminative attribution priors. Building on this idea, we further introduce CAP Hybrid, which combines priors from CAP with those from existing attribution techniques to form a more comprehensive and balanced supervisory signal. By aligning a model's self-attribution with these enriched priors, our approach encourages the learning of diverse, decision-relevant features. Extensive experiments in full-data, few-shot, and adversarial scenarios demonstrate that our method consistently enhances both interpretability and robustness.
Advancing Large Language Model Attribution through Self-Improving
Teaching large language models (LLMs) to generate text with citations to evidence sources can mitigate hallucinations and enhance verifiability in information-seeking systems. However, improving this capability requires high-quality attribution data, which is costly and labor-intensive. Inspired by recent advances in self-improvement that enhance LLMs without manual annotation, we present START, a Self-Taught AttRibuTion framework for iteratively improving the attribution capability of LLMs. First, to prevent models from stagnating due to initially insufficient supervision signals, START leverages the model to self-construct synthetic training data for warming up. To further self-improve the model's attribution ability, START iteratively utilizes fine-grained preference supervision signals constructed from its sampled responses to encourage robust, comprehensive, and attributable generation. Experiments on three open-domain question-answering datasets, covering long-form QA and multi-step reasoning, demonstrate significant performance gains of 25.13% on average without relying on human annotations and more advanced models. Further analysis reveals that START excels in aggregating information across multiple sources.
Understanding Deep Networks via Extremal Perturbations and Smooth Masks
The problem of attribution is concerned with identifying the parts of an input that are responsible for a model's output. An important family of attribution methods is based on measuring the effect of perturbations applied to the input. In this paper, we discuss some of the shortcomings of existing approaches to perturbation analysis and address them by introducing the concept of extremal perturbations, which are theoretically grounded and interpretable. We also introduce a number of technical innovations to compute extremal perturbations, including a new area constraint and a parametric family of smooth perturbations, which allow us to remove all tunable hyper-parameters from the optimization problem. We analyze the effect of perturbations as a function of their area, demonstrating excellent sensitivity to the spatial properties of the deep neural network under stimulation. We also extend perturbation analysis to the intermediate layers of a network. This application allows us to identify the salient channels necessary for classification, which, when visualized using feature inversion, can be used to elucidate model behavior. Lastly, we introduce TorchRay, an interpretability library built on PyTorch.
Impossibility Theorems for Feature Attribution
Despite a sea of interpretability methods that can produce plausible explanations, the field has also empirically seen many failure cases of such methods. In light of these results, it remains unclear for practitioners how to use these methods and choose between them in a principled way. In this paper, we show that for moderately rich model classes (easily satisfied by neural networks), any feature attribution method that is complete and linear -- for example, Integrated Gradients and SHAP -- can provably fail to improve on random guessing for inferring model behaviour. Our results apply to common end-tasks such as characterizing local model behaviour, identifying spurious features, and algorithmic recourse. One takeaway from our work is the importance of concretely defining end-tasks: once such an end-task is defined, a simple and direct approach of repeated model evaluations can outperform many other complex feature attribution methods.
Benchmarking Attribution Methods with Relative Feature Importance
Interpretability is an important area of research for safe deployment of machine learning systems. One particular type of interpretability method attributes model decisions to input features. Despite active development, quantitative evaluation of feature attribution methods remains difficult due to the lack of ground truth: we do not know which input features are in fact important to a model. In this work, we propose a framework for Benchmarking Attribution Methods (BAM) with a priori knowledge of relative feature importance. BAM includes 1) a carefully crafted dataset and models trained with known relative feature importance and 2) three complementary metrics to quantitatively evaluate attribution methods by comparing feature attributions between pairs of models and pairs of inputs. Our evaluation on several widely-used attribution methods suggests that certain methods are more likely to produce false positive explanations---features that are incorrectly attributed as more important to model prediction. We open source our dataset, models, and metrics.
AttributionBench: How Hard is Automatic Attribution Evaluation?
Modern generative search engines enhance the reliability of large language model (LLM) responses by providing cited evidence. However, evaluating the answer's attribution, i.e., whether every claim within the generated responses is fully supported by its cited evidence, remains an open problem. This verification, traditionally dependent on costly human evaluation, underscores the urgent need for automatic attribution evaluation methods. To bridge the gap in the absence of standardized benchmarks for these methods, we present AttributionBench, a comprehensive benchmark compiled from various existing attribution datasets. Our extensive experiments on AttributionBench reveal the challenges of automatic attribution evaluation, even for state-of-the-art LLMs. Specifically, our findings show that even a fine-tuned GPT-3.5 only achieves around 80% macro-F1 under a binary classification formulation. A detailed analysis of more than 300 error cases indicates that a majority of failures stem from the model's inability to process nuanced information, and the discrepancy between the information the model has access to and that human annotators do.
CRAFT: Concept Recursive Activation FacTorization for Explainability
Attribution methods, which employ heatmaps to identify the most influential regions of an image that impact model decisions, have gained widespread popularity as a type of explainability method. However, recent research has exposed the limited practical value of these methods, attributed in part to their narrow focus on the most prominent regions of an image -- revealing "where" the model looks, but failing to elucidate "what" the model sees in those areas. In this work, we try to fill in this gap with CRAFT -- a novel approach to identify both "what" and "where" by generating concept-based explanations. We introduce 3 new ingredients to the automatic concept extraction literature: (i) a recursive strategy to detect and decompose concepts across layers, (ii) a novel method for a more faithful estimation of concept importance using Sobol indices, and (iii) the use of implicit differentiation to unlock Concept Attribution Maps. We conduct both human and computer vision experiments to demonstrate the benefits of the proposed approach. We show that the proposed concept importance estimation technique is more faithful to the model than previous methods. When evaluating the usefulness of the method for human experimenters on a human-centered utility benchmark, we find that our approach significantly improves on two of the three test scenarios. Our code is freely available at github.com/deel-ai/Craft.
ChaosMining: A Benchmark to Evaluate Post-Hoc Local Attribution Methods in Low SNR Environments
In this study, we examine the efficacy of post-hoc local attribution methods in identifying features with predictive power from irrelevant ones in domains characterized by a low signal-to-noise ratio (SNR), a common scenario in real-world machine learning applications. We developed synthetic datasets encompassing symbolic functional, image, and audio data, incorporating a benchmark on the {\it (Model \(\times\) Attribution\(\times\) Noise Condition)} triplet. By rigorously testing various classic models trained from scratch, we gained valuable insights into the performance of these attribution methods in multiple conditions. Based on these findings, we introduce a novel extension to the notable recursive feature elimination (RFE) algorithm, enhancing its applicability for neural networks. Our experiments highlight its strengths in prediction and feature selection, alongside limitations in scalability. Further details and additional minor findings are included in the appendix, with extensive discussions. The codes and resources are available at https://github.com/geshijoker/ChaosMining/{URL}.
MAGIC: Near-Optimal Data Attribution for Deep Learning
The goal of predictive data attribution is to estimate how adding or removing a given set of training datapoints will affect model predictions. In convex settings, this goal is straightforward (i.e., via the infinitesimal jackknife). In large-scale (non-convex) settings, however, existing methods are far less successful -- current methods' estimates often only weakly correlate with ground truth. In this work, we present a new data attribution method (MAGIC) that combines classical methods and recent advances in metadifferentiation to (nearly) optimally estimate the effect of adding or removing training data on model predictions.
Less is More: Fewer Interpretable Region via Submodular Subset Selection
Image attribution algorithms aim to identify important regions that are highly relevant to model decisions. Although existing attribution solutions can effectively assign importance to target elements, they still face the following challenges: 1) existing attribution methods generate inaccurate small regions thus misleading the direction of correct attribution, and 2) the model cannot produce good attribution results for samples with wrong predictions. To address the above challenges, this paper re-models the above image attribution problem as a submodular subset selection problem, aiming to enhance model interpretability using fewer regions. To address the lack of attention to local regions, we construct a novel submodular function to discover more accurate small interpretation regions. To enhance the attribution effect for all samples, we also impose four different constraints on the selection of sub-regions, i.e., confidence, effectiveness, consistency, and collaboration scores, to assess the importance of various subsets. Moreover, our theoretical analysis substantiates that the proposed function is in fact submodular. Extensive experiments show that the proposed method outperforms SOTA methods on two face datasets (Celeb-A and VGG-Face2) and one fine-grained dataset (CUB-200-2011). For correctly predicted samples, the proposed method improves the Deletion and Insertion scores with an average of 4.9% and 2.5% gain relative to HSIC-Attribution. For incorrectly predicted samples, our method achieves gains of 81.0% and 18.4% compared to the HSIC-Attribution algorithm in the average highest confidence and Insertion score respectively. The code is released at https://github.com/RuoyuChen10/SMDL-Attribution.
Improving Attributed Text Generation of Large Language Models via Preference Learning
Large language models have been widely adopted in natural language processing, yet they face the challenge of generating unreliable content. Recent works aim to reduce misinformation and hallucinations by resorting to attribution as a means to provide evidence (i.e., citations). However, current attribution methods usually focus on the retrieval stage and automatic evaluation that neglect mirroring the citation mechanisms in human scholarly writing to bolster credibility. In this paper, we address these challenges by modelling the attribution task as preference learning and introducing an Automatic Preference Optimization (APO) framework. First, we create a curated collection for post-training with 6,330 examples by collecting and filtering from existing datasets. Second, considering the high cost of labelling preference data, we further propose an automatic method to synthesize attribution preference data resulting in 95,263 pairs. Moreover, inspired by the human citation process, we further propose a progressive preference optimization method by leveraging fine-grained information. Extensive experiments on three datasets (i.e., ASQA, StrategyQA, and ELI5) demonstrate that APO achieves state-of-the-art citation F1 with higher answer quality.
Hallucination Augmented Recitations for Language Models
Attribution is a key concept in large language models (LLMs) as it enables control over information sources and enhances the factuality of LLMs. While existing approaches utilize open book question answering to improve attribution, factual datasets may reward language models to recall facts that they already know from their pretraining data, not attribution. In contrast, counterfactual open book QA datasets would further improve attribution because the answer could only be grounded in the given text. We propose Hallucination Augmented Recitations (HAR) for creating counterfactual datasets by utilizing hallucination in LLMs to improve attribution. For open book QA as a case study, we demonstrate that models finetuned with our counterfactual datasets improve text grounding, leading to better open book QA performance, with up to an 8.0% increase in F1 score. Our counterfactual dataset leads to significantly better performance than using humanannotated factual datasets, even with 4x smaller datasets and 4x smaller models. We observe that improvements are consistent across various model sizes and datasets, including multi-hop, biomedical, and adversarial QA datasets.
Improving performance of deep learning models with axiomatic attribution priors and expected gradients
Recent research has demonstrated that feature attribution methods for deep networks can themselves be incorporated into training; these attribution priors optimize for a model whose attributions have certain desirable properties -- most frequently, that particular features are important or unimportant. These attribution priors are often based on attribution methods that are not guaranteed to satisfy desirable interpretability axioms, such as completeness and implementation invariance. Here, we introduce attribution priors to optimize for higher-level properties of explanations, such as smoothness and sparsity, enabled by a fast new attribution method formulation called expected gradients that satisfies many important interpretability axioms. This improves model performance on many real-world tasks where previous attribution priors fail. Our experiments show that the gains from combining higher-level attribution priors with expected gradients attributions are consistent across image, gene expression, and health care data sets. We believe this work motivates and provides the necessary tools to support the widespread adoption of axiomatic attribution priors in many areas of applied machine learning. The implementations and our results have been made freely available to academic communities.
Authorship Attribution in the Era of LLMs: Problems, Methodologies, and Challenges
Accurate attribution of authorship is crucial for maintaining the integrity of digital content, improving forensic investigations, and mitigating the risks of misinformation and plagiarism. Addressing the imperative need for proper authorship attribution is essential to uphold the credibility and accountability of authentic authorship. The rapid advancements of Large Language Models (LLMs) have blurred the lines between human and machine authorship, posing significant challenges for traditional methods. We presents a comprehensive literature review that examines the latest research on authorship attribution in the era of LLMs. This survey systematically explores the landscape of this field by categorizing four representative problems: (1) Human-written Text Attribution; (2) LLM-generated Text Detection; (3) LLM-generated Text Attribution; and (4) Human-LLM Co-authored Text Attribution. We also discuss the challenges related to ensuring the generalization and explainability of authorship attribution methods. Generalization requires the ability to generalize across various domains, while explainability emphasizes providing transparent and understandable insights into the decisions made by these models. By evaluating the strengths and limitations of existing methods and benchmarks, we identify key open problems and future research directions in this field. This literature review serves a roadmap for researchers and practitioners interested in understanding the state of the art in this rapidly evolving field. Additional resources and a curated list of papers are available and regularly updated at https://llm-authorship.github.io
A Survey of Large Language Models Attribution
Open-domain generative systems have gained significant attention in the field of conversational AI (e.g., generative search engines). This paper presents a comprehensive review of the attribution mechanisms employed by these systems, particularly large language models. Though attribution or citation improve the factuality and verifiability, issues like ambiguous knowledge reservoirs, inherent biases, and the drawbacks of excessive attribution can hinder the effectiveness of these systems. The aim of this survey is to provide valuable insights for researchers, aiding in the refinement of attribution methodologies to enhance the reliability and veracity of responses generated by open-domain generative systems. We believe that this field is still in its early stages; hence, we maintain a repository to keep track of ongoing studies at https://github.com/HITsz-TMG/awesome-llm-attributions.
Segmentation and Smoothing Affect Explanation Quality More Than the Choice of Perturbation-based XAI Method for Image Explanations
Perturbation-based post-hoc image explanation methods are commonly used to explain image prediction models. These methods perturb parts of the input to measure how those parts affect the output. Since the methods only require the input and output, they can be applied to any model, making them a popular choice to explain black-box models. While many different methods exist and have been compared with one another, it remains poorly understood which parameters of the different methods are responsible for their varying performance. This work uses the Randomized Input Sampling for Explanations (RISE) method as a baseline to evaluate many combinations of mask sampling, segmentation techniques, smoothing, attribution calculation, and per-segment or per-pixel attribution, using a proxy metric. The results show that attribution calculation, which is frequently the focus of other works, has little impact on the results. Conversely, segmentation and per-pixel attribution, rarely examined parameters, have a significant impact. The implementation of and data gathered in this work are available online: https://github.com/guspih/post-hoc-image-perturbation and https://bit.ly/smooth-mask-perturbation.
Training Data Attribution via Approximate Unrolled Differentiation
Many training data attribution (TDA) methods aim to estimate how a model's behavior would change if one or more data points were removed from the training set. Methods based on implicit differentiation, such as influence functions, can be made computationally efficient, but fail to account for underspecification, the implicit bias of the optimization algorithm, or multi-stage training pipelines. By contrast, methods based on unrolling address these issues but face scalability challenges. In this work, we connect the implicit-differentiation-based and unrolling-based approaches and combine their benefits by introducing Source, an approximate unrolling-based TDA method that is computed using an influence-function-like formula. While being computationally efficient compared to unrolling-based approaches, Source is suitable in cases where implicit-differentiation-based approaches struggle, such as in non-converged models and multi-stage training pipelines. Empirically, Source outperforms existing TDA techniques in counterfactual prediction, especially in settings where implicit-differentiation-based approaches fall short.
Double Trouble: How to not explain a text classifier's decisions using counterfactuals synthesized by masked language models?
A principle behind dozens of attribution methods is to take the prediction difference between before-and-after an input feature (here, a token) is removed as its attribution. A popular Input Marginalization (IM) method (Kim et al., 2020) uses BERT to replace a token, yielding more plausible counterfactuals. While Kim et al. (2020) reported that IM is effective, we find this conclusion not convincing as the DeletionBERT metric used in their paper is biased towards IM. Importantly, this bias exists in Deletion-based metrics, including Insertion, Sufficiency, and Comprehensiveness. Furthermore, our rigorous evaluation using 6 metrics and 3 datasets finds no evidence that IM is better than a Leave-One-Out (LOO) baseline. We find two reasons why IM is not better than LOO: (1) deleting a single word from the input only marginally reduces a classifier's accuracy; and (2) a highly predictable word is always given near-zero attribution, regardless of its true importance to the classifier. In contrast, making LIME samples more natural via BERT consistently improves LIME accuracy under several ROAR metrics.
GenerationPrograms: Fine-grained Attribution with Executable Programs
Recent large language models (LLMs) achieve impressive performance in source-conditioned text generation but often fail to correctly provide fine-grained attributions for their outputs, undermining verifiability and trust. Moreover, existing attribution methods do not explain how and why models leverage the provided source documents to generate their final responses, limiting interpretability. To overcome these challenges, we introduce a modular generation framework, GenerationPrograms, inspired by recent advancements in executable "code agent" architectures. Unlike conventional generation methods that simultaneously generate outputs and attributions or rely on post-hoc attribution, GenerationPrograms decomposes the process into two distinct stages: first, creating an executable program plan composed of modular text operations (such as paraphrasing, compression, and fusion) explicitly tailored to the query, and second, executing these operations following the program's specified instructions to produce the final response. Empirical evaluations demonstrate that GenerationPrograms significantly improves attribution quality at both the document level and sentence level across two long-form question-answering tasks and a multi-document summarization task. We further demonstrate that GenerationPrograms can effectively function as a post-hoc attribution method, outperforming traditional techniques in recovering accurate attributions. In addition, the interpretable programs generated by GenerationPrograms enable localized refinement through modular-level improvements that further enhance overall attribution quality.
Path Choice Matters for Clear Attribution in Path Methods
Rigorousness and clarity are both essential for interpretations of DNNs to engender human trust. Path methods are commonly employed to generate rigorous attributions that satisfy three axioms. However, the meaning of attributions remains ambiguous due to distinct path choices. To address the ambiguity, we introduce Concentration Principle, which centrally allocates high attributions to indispensable features, thereby endowing aesthetic and sparsity. We then present SAMP, a model-agnostic interpreter, which efficiently searches the near-optimal path from a pre-defined set of manipulation paths. Moreover, we propose the infinitesimal constraint (IC) and momentum strategy (MS) to improve the rigorousness and optimality. Visualizations show that SAMP can precisely reveal DNNs by pinpointing salient image pixels. We also perform quantitative experiments and observe that our method significantly outperforms the counterparts. Code: https://github.com/zbr17/SAMP.
Making Long-Context Language Models Better Multi-Hop Reasoners
Recent advancements in long-context modeling have enhanced language models (LMs) for complex tasks across multiple NLP applications. Despite this progress, we find that these models struggle with multi-hop reasoning and exhibit decreased performance in the presence of noisy contexts. In this paper, we introduce Reasoning with Attributions, a novel approach that prompts LMs to supply attributions for each assertion during their reasoning. We validate our approach through experiments on three multi-hop datasets, employing both proprietary and open-source models, and demonstrate its efficacy and resilience. Furthermore, we explore methods to augment reasoning capabilities via fine-tuning and offer an attribution-annotated dataset and a specialized training strategy. Our fine-tuned model achieves competitive performance on multi-hop reasoning benchmarks, closely paralleling proprietary LMs such as ChatGPT and Claude-instant.
SLANT: Spurious Logo ANalysis Toolkit
Online content is filled with logos, from ads and social media posts to website branding and product placements. Consequently, these logos are prevalent in the extensive web-scraped datasets used to pretrain Vision-Language Models, which are used for a wide array of tasks (content moderation, object classification). While these models have been shown to learn harmful correlations in various tasks, whether these correlations include logos remains understudied. Understanding this is especially important due to logos often being used by public-facing entities like brands and government agencies. To that end, we develop SLANT: A Spurious Logo ANalysis Toolkit. Our key finding is that some logos indeed lead to spurious incorrect predictions, for example, adding the Adidas logo to a photo of a person causes a model classify the person as greedy. SLANT contains a semi-automatic mechanism for mining such "spurious" logos. The mechanism consists of a comprehensive logo bank, CC12M-LogoBank, and an algorithm that searches the bank for logos that VLMs spuriously correlate with a user-provided downstream recognition target. We uncover various seemingly harmless logos that VL models correlate 1) with negative human adjectives 2) with the concept of `harmlessness'; causing models to misclassify harmful online content as harmless, and 3) with user-provided object concepts; causing lower recognition accuracy on ImageNet zero-shot classification. Furthermore, SLANT's logos can be seen as effective attacks against foundational models; an attacker could place a spurious logo on harmful content, causing the model to misclassify it as harmless. This threat is alarming considering the simplicity of logo attacks, increasing the attack surface of VL models. As a defense, we include in our Toolkit two effective mitigation strategies that seamlessly integrate with zero-shot inference of foundation models.
Document Attribution: Examining Citation Relationships using Large Language Models
As Large Language Models (LLMs) are increasingly applied to document-based tasks - such as document summarization, question answering, and information extraction - where user requirements focus on retrieving information from provided documents rather than relying on the model's parametric knowledge, ensuring the trustworthiness and interpretability of these systems has become a critical concern. A central approach to addressing this challenge is attribution, which involves tracing the generated outputs back to their source documents. However, since LLMs can produce inaccurate or imprecise responses, it is crucial to assess the reliability of these citations. To tackle this, our work proposes two techniques. (1) A zero-shot approach that frames attribution as a straightforward textual entailment task. Our method using flan-ul2 demonstrates an improvement of 0.27% and 2.4% over the best baseline of ID and OOD sets of AttributionBench, respectively. (2) We also explore the role of the attention mechanism in enhancing the attribution process. Using a smaller LLM, flan-t5-small, the F1 scores outperform the baseline across almost all layers except layer 4 and layers 8 through 11.
WOUAF: Weight Modulation for User Attribution and Fingerprinting in Text-to-Image Diffusion Models
The rapid advancement of generative models, facilitating the creation of hyper-realistic images from textual descriptions, has concurrently escalated critical societal concerns such as misinformation. Traditional fake detection mechanisms, although providing some mitigation, fall short in attributing responsibility for the malicious use of synthetic images. This paper introduces a novel approach to model fingerprinting that assigns responsibility for the generated images, thereby serving as a potential countermeasure to model misuse. Our method modifies generative models based on each user's unique digital fingerprint, imprinting a unique identifier onto the resultant content that can be traced back to the user. This approach, incorporating fine-tuning into Text-to-Image (T2I) tasks using the Stable Diffusion Model, demonstrates near-perfect attribution accuracy with a minimal impact on output quality. We rigorously scrutinize our method's secrecy under two distinct scenarios: one where a malicious user attempts to detect the fingerprint, and another where a user possesses a comprehensive understanding of our method. We also evaluate the robustness of our approach against various image post-processing manipulations typically executed by end-users. Through extensive evaluation of the Stable Diffusion models, our method presents a promising and novel avenue for accountable model distribution and responsible use.
Automatic Evaluation of Attribution by Large Language Models
A recent focus of large language model (LLM) development, as exemplified by generative search engines, is to incorporate external references to generate and support their claims. However, evaluating the attribution, i.e., verifying whether the generated statement is indeed fully supported by the cited reference, remains an open problem. Although human evaluation is common practice, it is costly and time-consuming. In this paper, we investigate the automatic evaluation of attribution by LLMs. We begin by providing a definition of attribution and then explore two approaches for automatic evaluation: prompting LLMs and fine-tuning smaller LMs. The fine-tuning data is repurposed from related tasks, such as question answering, fact-checking, natural language inference, and summarization. To facilitate the evaluation, we manually curate a set of test examples covering 12 domains from a generative search engine, New Bing. Our results on the curated test set and simulated test examples from existing benchmark questions highlight both promising signals as well as remaining challenges for the automatic evaluation of attribution. We hope our testbed, modeling methodology, and insights will help lay the foundation for future studies on this important problem.
Less is More: Efficient Black-box Attribution via Minimal Interpretable Subset Selection
To develop a trustworthy AI system, which aim to identify the input regions that most influence the models decisions. The primary task of existing attribution methods lies in efficiently and accurately identifying the relationships among input-prediction interactions. Particularly when the input data is discrete, such as images, analyzing the relationship between inputs and outputs poses a significant challenge due to the combinatorial explosion. In this paper, we propose a novel and efficient black-box attribution mechanism, LiMA (Less input is More faithful for Attribution), which reformulates the attribution of important regions as an optimization problem for submodular subset selection. First, to accurately assess interactions, we design a submodular function that quantifies subset importance and effectively captures their impact on decision outcomes. Then, efficiently ranking input sub-regions by their importance for attribution, we improve optimization efficiency through a novel bidirectional greedy search algorithm. LiMA identifies both the most and least important samples while ensuring an optimal attribution boundary that minimizes errors. Extensive experiments on eight foundation models demonstrate that our method provides faithful interpretations with fewer regions and exhibits strong generalization, shows an average improvement of 36.3% in Insertion and 39.6% in Deletion. Our method also outperforms the naive greedy search in attribution efficiency, being 1.6 times faster. Furthermore, when explaining the reasons behind model prediction errors, the average highest confidence achieved by our method is, on average, 86.1% higher than that of state-of-the-art attribution algorithms. The code is available at https://github.com/RuoyuChen10/LIMA.
GraphTracer: Graph-Guided Failure Tracing in LLM Agents for Robust Multi-Turn Deep Search
Multi-agent systems powered by Large Language Models excel at complex tasks through coordinated collaboration, yet they face high failure rates in multi-turn deep search scenarios. Existing temporal attribution methods struggle to accurately diagnose root causes, particularly when errors propagate across multiple agents. Attempts to automate failure attribution by analyzing action sequences remain ineffective due to their inability to account for information dependencies that span agents. This paper identifies two core challenges: (i) distinguishing symptoms from root causes in multi-agent error propagation, and (ii) tracing information dependencies beyond temporal order. To address these issues, we introduce GraphTracer, a framework that redefines failure attribution through information flow analysis. GraphTracer constructs Information Dependency Graphs (IDGs) to explicitly capture how agents reference and build on prior outputs. It localizes root causes by tracing through these dependency structures instead of relying on temporal sequences. GraphTracer also uses graph-aware synthetic data generation to target critical nodes, creating realistic failure scenarios. Evaluations on the Who\&When benchmark and integration into production systems demonstrate that GraphTracer-8B achieves up to 18.18\% higher attribution accuracy compared to state-of-the-art models and enables 4.8\% to 14.2\% performance improvements in deployed multi-agent frameworks, establishing a robust solution for multi-agent system debugging.
FinLFQA: Evaluating Attributed Text Generation of LLMs in Financial Long-Form Question Answering
Large Language Models (LLMs) frequently hallucinate to long-form questions, producing plausible yet factually incorrect answers. A common mitigation strategy is to provide attribution to LLM outputs. However, existing benchmarks primarily focus on simple attribution that retrieves supporting textual evidence as references. We argue that in real-world scenarios such as financial applications, attribution goes beyond reference retrieval. We introduce FinLFQA, a benchmark designed to evaluate the ability of LLMs to generate long-form answers to complex financial questions with reliable and nuanced attributions. FinLFQA evaluates three critical aspects of attribution through human annotations: (1) supporting evidence extracted from financial reports, (2) intermediate numerical reasoning steps, and (3) domain-specific financial knowledge that informs the reasoning process. We further provide an automatic evaluation framework covering both answer quality and attribution quality. Through extensive experiments on eight LLMs across multiple attribution-generation paradigms, we find that fine-grained metrics are important to distinguish model capabilities, that end-to-end generation achieves comparable performance to post-hoc approaches, and that iterative refinement only helps when guided by external feedback.
Exploring Jiu-Jitsu Argumentation for Writing Peer Review Rebuttals
In many domains of argumentation, people's arguments are driven by so-called attitude roots, i.e., underlying beliefs and world views, and their corresponding attitude themes. Given the strength of these latent drivers of arguments, recent work in psychology suggests that instead of directly countering surface-level reasoning (e.g., falsifying given premises), one should follow an argumentation style inspired by the Jiu-Jitsu 'soft' combat system (Hornsey and Fielding, 2017): first, identify an arguer's attitude roots and themes, and then choose a prototypical rebuttal that is aligned with those drivers instead of invalidating those. In this work, we are the first to explore Jiu-Jitsu argumentation for peer review by proposing the novel task of attitude and theme-guided rebuttal generation. To this end, we enrich an existing dataset for discourse structure in peer reviews with attitude roots, attitude themes, and canonical rebuttals. To facilitate this process, we recast established annotation concepts from the domain of peer reviews (e.g., aspects a review sentence is relating to) and train domain-specific models. We then propose strong rebuttal generation strategies, which we benchmark on our novel dataset for the task of end-to-end attitude and theme-guided rebuttal generation and two subtasks.
Comprehensive Attribution: Inherently Explainable Vision Model with Feature Detector
As deep vision models' popularity rapidly increases, there is a growing emphasis on explanations for model predictions. The inherently explainable attribution method aims to enhance the understanding of model behavior by identifying the important regions in images that significantly contribute to predictions. It is achieved by cooperatively training a selector (generating an attribution map to identify important features) and a predictor (making predictions using the identified features). Despite many advancements, existing methods suffer from the incompleteness problem, where discriminative features are masked out, and the interlocking problem, where the non-optimized selector initially selects noise, causing the predictor to fit on this noise and perpetuate the cycle. To address these problems, we introduce a new objective that discourages the presence of discriminative features in the masked-out regions thus enhancing the comprehensiveness of feature selection. A pre-trained detector is introduced to detect discriminative features in the masked-out region. If the selector selects noise instead of discriminative features, the detector can observe and break the interlocking situation by penalizing the selector. Extensive experiments show that our model makes accurate predictions with higher accuracy than the regular black-box model, and produces attribution maps with high feature coverage, localization ability, fidelity and robustness. Our code will be available at https://github.com/Zood123/COMET{https://github.com/Zood123/COMET}.
Thought Anchors: Which LLM Reasoning Steps Matter?
Reasoning large language models have recently achieved state-of-the-art performance in many fields. However, their long-form chain-of-thought reasoning creates interpretability challenges as each generated token depends on all previous ones, making the computation harder to decompose. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We present three complementary attribution methods: (1) a black-box method measuring each sentence's counterfactual importance by comparing final answers across 100 rollouts conditioned on the model generating that sentence or one with a different meaning; (2) a white-box method of aggregating attention patterns between pairs of sentences, which identified ``broadcasting'' sentences that receive disproportionate attention from all future sentences via ``receiver'' attention heads; (3) a causal attribution method measuring logical connections between sentences by suppressing attention toward one sentence and measuring the effect on each future sentence's tokens. Each method provides evidence for the existence of thought anchors, reasoning steps that have outsized importance and that disproportionately influence the subsequent reasoning process. These thought anchors are typically planning or backtracking sentences. We provide an open-source tool (www.thought-anchors.com) for visualizing the outputs of our methods, and present a case study showing converging patterns across methods that map how a model performs multi-step reasoning. The consistency across methods demonstrates the potential of sentence-level analysis for a deeper understanding of reasoning models.
Evidence-Driven Retrieval Augmented Response Generation for Online Misinformation
The proliferation of online misinformation has posed significant threats to public interest. While numerous online users actively participate in the combat against misinformation, many of such responses can be characterized by the lack of politeness and supporting facts. As a solution, text generation approaches are proposed to automatically produce counter-misinformation responses. Nevertheless, existing methods are often trained end-to-end without leveraging external knowledge, resulting in subpar text quality and excessively repetitive responses. In this paper, we propose retrieval augmented response generation for online misinformation (RARG), which collects supporting evidence from scientific sources and generates counter-misinformation responses based on the evidences. In particular, our RARG consists of two stages: (1) evidence collection, where we design a retrieval pipeline to retrieve and rerank evidence documents using a database comprising over 1M academic articles; (2) response generation, in which we align large language models (LLMs) to generate evidence-based responses via reinforcement learning from human feedback (RLHF). We propose a reward function to maximize the utilization of the retrieved evidence while maintaining the quality of the generated text, which yields polite and factual responses that clearly refutes misinformation. To demonstrate the effectiveness of our method, we study the case of COVID-19 and perform extensive experiments with both in- and cross-domain datasets, where RARG consistently outperforms baselines by generating high-quality counter-misinformation responses.
TRAK: Attributing Model Behavior at Scale
The goal of data attribution is to trace model predictions back to training data. Despite a long line of work towards this goal, existing approaches to data attribution tend to force users to choose between computational tractability and efficacy. That is, computationally tractable methods can struggle with accurately attributing model predictions in non-convex settings (e.g., in the context of deep neural networks), while methods that are effective in such regimes require training thousands of models, which makes them impractical for large models or datasets. In this work, we introduce TRAK (Tracing with the Randomly-projected After Kernel), a data attribution method that is both effective and computationally tractable for large-scale, differentiable models. In particular, by leveraging only a handful of trained models, TRAK can match the performance of attribution methods that require training thousands of models. We demonstrate the utility of TRAK across various modalities and scales: image classifiers trained on ImageNet, vision-language models (CLIP), and language models (BERT and mT5). We provide code for using TRAK (and reproducing our work) at https://github.com/MadryLab/trak .
The Hidden DNA of LLM-Generated JavaScript: Structural Patterns Enable High-Accuracy Authorship Attribution
In this paper, we present the first large-scale study exploring whether JavaScript code generated by Large Language Models (LLMs) can reveal which model produced it, enabling reliable authorship attribution and model fingerprinting. With the rapid rise of AI-generated code, attribution is playing a critical role in detecting vulnerabilities, flagging malicious content, and ensuring accountability. While AI-vs-human detection usually treats AI as a single category we show that individual LLMs leave unique stylistic signatures, even among models belonging to the same family or parameter size. To this end, we introduce LLM-NodeJS, a dataset of 50,000 Node.js back-end programs from 20 large language models. Each has four transformed variants, yielding 250,000 unique JavaScript samples and two additional representations (JSIR and AST) for diverse research applications. Using this dataset, we benchmark traditional machine learning classifiers against fine-tuned Transformer encoders and introduce CodeT5-JSA, a custom architecture derived from the 770M-parameter CodeT5 model with its decoder removed and a modified classification head. It achieves 95.8% accuracy on five-class attribution, 94.6% on ten-class, and 88.5% on twenty-class tasks, surpassing other tested models such as BERT, CodeBERT, and Longformer. We demonstrate that classifiers capture deeper stylistic regularities in program dataflow and structure, rather than relying on surface-level features. As a result, attribution remains effective even after mangling, comment removal, and heavy code transformations. To support open science and reproducibility, we release the LLM-NodeJS dataset, Google Colab training scripts, and all related materials on GitHub: https://github.com/LLM-NodeJS-dataset.
RARR: Researching and Revising What Language Models Say, Using Language Models
Language models (LMs) now excel at many tasks such as few-shot learning, question answering, reasoning, and dialog. However, they sometimes generate unsupported or misleading content. A user cannot easily determine whether their outputs are trustworthy or not, because most LMs do not have any built-in mechanism for attribution to external evidence. To enable attribution while still preserving all the powerful advantages of recent generation models, we propose RARR (Retrofit Attribution using Research and Revision), a system that 1) automatically finds attribution for the output of any text generation model and 2) post-edits the output to fix unsupported content while preserving the original output as much as possible. When applied to the output of several state-of-the-art LMs on a diverse set of generation tasks, we find that RARR significantly improves attribution while otherwise preserving the original input to a much greater degree than previously explored edit models. Furthermore, the implementation of RARR requires only a handful of training examples, a large language model, and standard web search.
Automatic Failure Attribution and Critical Step Prediction Method for Multi-Agent Systems Based on Causal Inference
Multi-agent systems (MAS) are critical for automating complex tasks, yet their practical deployment is severely hampered by the challenge of failure attribution. Current diagnostic tools, which rely on statistical correlations, are fundamentally inadequate; on challenging benchmarks like Who\&When, state-of-the-art methods achieve less than 15\% accuracy in locating the root-cause step of a failure. To address this critical gap, we introduce the first failure attribution framework for MAS grounded in multi-granularity causal inference. Our approach makes two key technical contributions: (1) a performance causal inversion principle, which correctly models performance dependencies by reversing the data flow in execution logs, combined with Shapley values to accurately assign agent-level blame; (2) a novel causal discovery algorithm, CDC-MAS, that robustly identifies critical failure steps by tackling the non-stationary nature of MAS interaction data. The framework's attribution results directly fuel an automated optimization loop, generating targeted suggestions whose efficacy is validated via counterfactual simulations. Evaluations on the Who\&When and TRAIL benchmarks demonstrate a significant leap in performance. Our method achieves up to 36.2\% step-level accuracy. Crucially, the generated optimizations boost overall task success rates by an average of 22.4\%. This work provides a principled and effective solution for debugging complex agent interactions, paving the way for more reliable and interpretable multi-agent systems.
Towards Tracing Factual Knowledge in Language Models Back to the Training Data
Language models (LMs) have been shown to memorize a great deal of factual knowledge contained in their training data. But when an LM generates an assertion, it is often difficult to determine where it learned this information and whether it is true. In this paper, we propose the problem of fact tracing: identifying which training examples taught an LM to generate a particular factual assertion. Prior work on training data attribution (TDA) may offer effective tools for identifying such examples, known as "proponents". We present the first quantitative benchmark to evaluate this. We compare two popular families of TDA methods -- gradient-based and embedding-based -- and find that much headroom remains. For example, both methods have lower proponent-retrieval precision than an information retrieval baseline (BM25) that does not have access to the LM at all. We identify key challenges that may be necessary for further improvement such as overcoming the problem of gradient saturation, and also show how several nuanced implementation details of existing neural TDA methods can significantly improve overall fact tracing performance.
Evaluating Data Attribution for Text-to-Image Models
While large text-to-image models are able to synthesize "novel" images, these images are necessarily a reflection of the training data. The problem of data attribution in such models -- which of the images in the training set are most responsible for the appearance of a given generated image -- is a difficult yet important one. As an initial step toward this problem, we evaluate attribution through "customization" methods, which tune an existing large-scale model toward a given exemplar object or style. Our key insight is that this allows us to efficiently create synthetic images that are computationally influenced by the exemplar by construction. With our new dataset of such exemplar-influenced images, we are able to evaluate various data attribution algorithms and different possible feature spaces. Furthermore, by training on our dataset, we can tune standard models, such as DINO, CLIP, and ViT, toward the attribution problem. Even though the procedure is tuned towards small exemplar sets, we show generalization to larger sets. Finally, by taking into account the inherent uncertainty of the problem, we can assign soft attribution scores over a set of training images.
ContextCite: Attributing Model Generation to Context
How do language models use information provided as context when generating a response? Can we infer whether a particular generated statement is actually grounded in the context, a misinterpretation, or fabricated? To help answer these questions, we introduce the problem of context attribution: pinpointing the parts of the context (if any) that led a model to generate a particular statement. We then present ContextCite, a simple and scalable method for context attribution that can be applied on top of any existing language model. Finally, we showcase the utility of ContextCite through three applications: (1) helping verify generated statements (2) improving response quality by pruning the context and (3) detecting poisoning attacks. We provide code for ContextCite at https://github.com/MadryLab/context-cite.
Evaluating Implicit Bias in Large Language Models by Attacking From a Psychometric Perspective
As large language models (LLMs) become an important way of information access, there have been increasing concerns that LLMs may intensify the spread of unethical content, including implicit bias that hurts certain populations without explicit harmful words. In this paper, we conduct a rigorous evaluation of LLMs' implicit bias towards certain demographics by attacking them from a psychometric perspective to elicit agreements to biased viewpoints. Inspired by psychometric principles in cognitive and social psychology, we propose three attack approaches, i.e., Disguise, Deception, and Teaching. Incorporating the corresponding attack instructions, we built two benchmarks: (1) a bilingual dataset with biased statements covering four bias types (2.7K instances) for extensive comparative analysis, and (2) BUMBLE, a larger benchmark spanning nine common bias types (12.7K instances) for comprehensive evaluation. Extensive evaluation of popular commercial and open-source LLMs shows that our methods can elicit LLMs' inner bias more effectively than competitive baselines. Our attack methodology and benchmarks offer an effective means of assessing the ethical risks of LLMs, driving progress toward greater accountability in their development. Our code, data and benchmarks are available at https://github.com/yuchenwen1/ImplicitBiasPsychometricEvaluation and https://github.com/yuchenwen1/BUMBLE.
Can You Trick the Grader? Adversarial Persuasion of LLM Judges
As large language models take on growing roles as automated evaluators in practical settings, a critical question arises: Can individuals persuade an LLM judge to assign unfairly high scores? This study is the first to reveal that strategically embedded persuasive language can bias LLM judges when scoring mathematical reasoning tasks, where correctness should be independent of stylistic variation. Grounded in Aristotle's rhetorical principles, we formalize seven persuasion techniques (Majority, Consistency, Flattery, Reciprocity, Pity, Authority, Identity) and embed them into otherwise identical responses. Across six math benchmarks, we find that persuasive language leads LLM judges to assign inflated scores to incorrect solutions, by up to 8% on average, with Consistency causing the most severe distortion. Notably, increasing model size does not substantially mitigate this vulnerability. Further analysis demonstrates that combining multiple persuasion techniques amplifies the bias, and pairwise evaluation is likewise susceptible. Moreover, the persuasive effect persists under counter prompting strategies, highlighting a critical vulnerability in LLM-as-a-Judge pipelines and underscoring the need for robust defenses against persuasion-based attacks.
An Empirical Study of Memorization in NLP
A recent study by Feldman (2020) proposed a long-tail theory to explain the memorization behavior of deep learning models. However, memorization has not been empirically verified in the context of NLP, a gap addressed by this work. In this paper, we use three different NLP tasks to check if the long-tail theory holds. Our experiments demonstrate that top-ranked memorized training instances are likely atypical, and removing the top-memorized training instances leads to a more serious drop in test accuracy compared with removing training instances randomly. Furthermore, we develop an attribution method to better understand why a training instance is memorized. We empirically show that our memorization attribution method is faithful, and share our interesting finding that the top-memorized parts of a training instance tend to be features negatively correlated with the class label.
Are You Robert or RoBERTa? Deceiving Online Authorship Attribution Models Using Neural Text Generators
Recently, there has been a rise in the development of powerful pre-trained natural language models, including GPT-2, Grover, and XLM. These models have shown state-of-the-art capabilities towards a variety of different NLP tasks, including question answering, content summarisation, and text generation. Alongside this, there have been many studies focused on online authorship attribution (AA). That is, the use of models to identify the authors of online texts. Given the power of natural language models in generating convincing texts, this paper examines the degree to which these language models can generate texts capable of deceiving online AA models. Experimenting with both blog and Twitter data, we utilise GPT-2 language models to generate texts using the existing posts of online users. We then examine whether these AI-based text generators are capable of mimicking authorial style to such a degree that they can deceive typical AA models. From this, we find that current AI-based text generators are able to successfully mimic authorship, showing capabilities towards this on both datasets. Our findings, in turn, highlight the current capacity of powerful natural language models to generate original online posts capable of mimicking authorial style sufficiently to deceive popular AA methods; a key finding given the proposed role of AA in real world applications such as spam-detection and forensic investigation.
OmniDFA: A Unified Framework for Open Set Synthesis Image Detection and Few-Shot Attribution
AI-generated image (AIGI) detection and source model attribution remain central challenges in combating deepfake abuses, primarily due to the structural diversity of generative models. Current detection methods are prone to overfitting specific forgery traits, whereas source attribution offers a robust alternative through fine-grained feature discrimination. However, synthetic image attribution remains constrained by the scarcity of large-scale, well-categorized synthetic datasets, limiting its practicality and compatibility with detection systems. In this work, we propose a new paradigm for image attribution called open-set, few-shot source identification. This paradigm is designed to reliably identify unseen generators using only limited samples, making it highly suitable for real-world application. To this end, we introduce OmniDFA (Omni Detector and Few-shot Attributor), a novel framework for AIGI that not only assesses the authenticity of images, but also determines the synthesis origins in a few-shot manner. To facilitate this work, we construct OmniFake, a large class-aware synthetic image dataset that curates 1.17 M images from 45 distinct generative models, substantially enriching the foundational resources for research on both AIGI detection and attribution. Experiments demonstrate that OmniDFA exhibits excellent capability in open-set attribution and achieves state-of-the-art generalization performance on AIGI detection. Our dataset and code will be made available.
Attributing Image Generative Models using Latent Fingerprints
Generative models have enabled the creation of contents that are indistinguishable from those taken from nature. Open-source development of such models raised concerns about the risks of their misuse for malicious purposes. One potential risk mitigation strategy is to attribute generative models via fingerprinting. Current fingerprinting methods exhibit a significant tradeoff between robust attribution accuracy and generation quality while lacking design principles to improve this tradeoff. This paper investigates the use of latent semantic dimensions as fingerprints, from where we can analyze the effects of design variables, including the choice of fingerprinting dimensions, strength, and capacity, on the accuracy-quality tradeoff. Compared with previous SOTA, our method requires minimum computation and is more applicable to large-scale models. We use StyleGAN2 and the latent diffusion model to demonstrate the efficacy of our method.
Abduct, Act, Predict: Scaffolding Causal Inference for Automated Failure Attribution in Multi-Agent Systems
Failure attribution in multi-agent systems -- pinpointing the exact step where a decisive error occurs -- is a critical yet unsolved challenge. Current methods treat this as a pattern recognition task over long conversation logs, leading to critically low step-level accuracy (below 17\%), which renders them impractical for debugging complex systems. Their core weakness is a fundamental inability to perform robust counterfactual reasoning: to determine if correcting a single action would have actually averted the task failure. To bridge this counterfactual inference gap, we introduce Abduct-Act-Predict (A2P) Scaffolding, a novel agent framework that transforms failure attribution from pattern recognition into a structured causal inference task. A2P explicitly guides a large language model through a formal three-step reasoning process within a single inference pass: (1) Abduction, to infer the hidden root causes behind an agent's actions; (2) Action, to define a minimal corrective intervention; and (3) Prediction, to simulate the subsequent trajectory and verify if the intervention resolves the failure. This structured approach leverages the holistic context of the entire conversation while imposing a rigorous causal logic on the model's analysis. Our extensive experiments on the Who\&When benchmark demonstrate its efficacy. On the Algorithm-Generated dataset, A2P achieves 47.46\% step-level accuracy, a 2.85times improvement over the 16.67\% of the baseline. On the more complex Hand-Crafted dataset, it achieves 29.31\% step accuracy, a 2.43times improvement over the baseline's 12.07\%. By reframing the problem through a causal lens, A2P Scaffolding provides a robust, verifiable, and significantly more accurate solution for automated failure attribution. Ours code are released at https://github.com/ResearAI/A2P.
A Close Look at Decomposition-based XAI-Methods for Transformer Language Models
Various XAI attribution methods have been recently proposed for the transformer architecture, allowing for insights into the decision-making process of large language models by assigning importance scores to input tokens and intermediate representations. One class of methods that seems very promising in this direction includes decomposition-based approaches, i.e., XAI-methods that redistribute the model's prediction logit through the network, as this value is directly related to the prediction. In the previous literature we note though that two prominent methods of this category, namely ALTI-Logit and LRP, have not yet been analyzed in juxtaposition and hence we propose to close this gap by conducting a careful quantitative evaluation w.r.t. ground truth annotations on a subject-verb agreement task, as well as various qualitative inspections, using BERT, GPT-2 and LLaMA-3 as a testbed. Along the way we compare and extend the ALTI-Logit and LRP methods, including the recently proposed AttnLRP variant, from an algorithmic and implementation perspective. We further incorporate in our benchmark two widely-used gradient-based attribution techniques. Finally, we make our carefullly constructed benchmark dataset for evaluating attributions on language models, as well as our code, publicly available in order to foster evaluation of XAI-methods on a well-defined common ground.
Tracing the Origin of Adversarial Attack for Forensic Investigation and Deterrence
Deep neural networks are vulnerable to adversarial attacks. In this paper, we take the role of investigators who want to trace the attack and identify the source, that is, the particular model which the adversarial examples are generated from. Techniques derived would aid forensic investigation of attack incidents and serve as deterrence to potential attacks. We consider the buyers-seller setting where a machine learning model is to be distributed to various buyers and each buyer receives a slightly different copy with same functionality. A malicious buyer generates adversarial examples from a particular copy M_i and uses them to attack other copies. From these adversarial examples, the investigator wants to identify the source M_i. To address this problem, we propose a two-stage separate-and-trace framework. The model separation stage generates multiple copies of a model for a same classification task. This process injects unique characteristics into each copy so that adversarial examples generated have distinct and traceable features. We give a parallel structure which embeds a ``tracer'' in each copy, and a noise-sensitive training loss to achieve this goal. The tracing stage takes in adversarial examples and a few candidate models, and identifies the likely source. Based on the unique features induced by the noise-sensitive loss function, we could effectively trace the potential adversarial copy by considering the output logits from each tracer. Empirical results show that it is possible to trace the origin of the adversarial example and the mechanism can be applied to a wide range of architectures and datasets.
The Topic Confusion Task: A Novel Scenario for Authorship Attribution
Authorship attribution is the problem of identifying the most plausible author of an anonymous text from a set of candidate authors. Researchers have investigated same-topic and cross-topic scenarios of authorship attribution, which differ according to whether new, unseen topics are used in the testing phase. However, neither scenario allows us to explain whether errors are caused by a failure to capture authorship writing style or by a topic shift. Motivated by this, we propose the topic confusion task where we switch the author-topic configuration between the training and testing sets. This setup allows us to distinguish two types of errors: those caused by the topic shift and those caused by the features' inability to capture the writing styles. We show that stylometric features with part-of-speech tags are the least susceptible to topic variations. We further show that combining them with other features leads to significantly lower topic confusion and higher attribution accuracy. Finally, we show that pretrained language models such as BERT and RoBERTa perform poorly on this task and are surpassed by simple features such as word-level n-grams.
A Bayesian Approach to Harnessing the Power of LLMs in Authorship Attribution
Authorship attribution aims to identify the origin or author of a document. Traditional approaches have heavily relied on manual features and fail to capture long-range correlations, limiting their effectiveness. Recent advancements leverage text embeddings from pre-trained language models, which require significant fine-tuning on labeled data, posing challenges in data dependency and limited interpretability. Large Language Models (LLMs), with their deep reasoning capabilities and ability to maintain long-range textual associations, offer a promising alternative. This study explores the potential of pre-trained LLMs in one-shot authorship attribution, specifically utilizing Bayesian approaches and probability outputs of LLMs. Our methodology calculates the probability that a text entails previous writings of an author, reflecting a more nuanced understanding of authorship. By utilizing only pre-trained models such as Llama-3-70B, our results on the IMDb and blog datasets show an impressive 85\% accuracy in one-shot authorship classification across ten authors. Our findings set new baselines for one-shot authorship analysis using LLMs and expand the application scope of these models in forensic linguistics. This work also includes extensive ablation studies to validate our approach.
Are CLIP features all you need for Universal Synthetic Image Origin Attribution?
The steady improvement of Diffusion Models for visual synthesis has given rise to many new and interesting use cases of synthetic images but also has raised concerns about their potential abuse, which poses significant societal threats. To address this, fake images need to be detected and attributed to their source model, and given the frequent release of new generators, realistic applications need to consider an Open-Set scenario where some models are unseen at training time. Existing forensic techniques are either limited to Closed-Set settings or to GAN-generated images, relying on fragile frequency-based "fingerprint" features. By contrast, we propose a simple yet effective framework that incorporates features from large pre-trained foundation models to perform Open-Set origin attribution of synthetic images produced by various generative models, including Diffusion Models. We show that our method leads to remarkable attribution performance, even in the low-data regime, exceeding the performance of existing methods and generalizes better on images obtained from a diverse set of architectures. We make the code publicly available at: https://github.com/ciodar/UniversalAttribution.
LLMs are Vulnerable to Malicious Prompts Disguised as Scientific Language
As large language models (LLMs) have been deployed in various real-world settings, concerns about the harm they may propagate have grown. Various jailbreaking techniques have been developed to expose the vulnerabilities of these models and improve their safety. This work reveals that many state-of-the-art LLMs are vulnerable to malicious requests hidden behind scientific language. Specifically, our experiments with GPT4o, GPT4o-mini, GPT-4, LLama3-405B-Instruct, Llama3-70B-Instruct, Cohere, Gemini models demonstrate that, the models' biases and toxicity substantially increase when prompted with requests that deliberately misinterpret social science and psychological studies as evidence supporting the benefits of stereotypical biases. Alarmingly, these models can also be manipulated to generate fabricated scientific arguments claiming that biases are beneficial, which can be used by ill-intended actors to systematically jailbreak these strong LLMs. Our analysis studies various factors that contribute to the models' vulnerabilities to malicious requests in academic language. Mentioning author names and venues enhances the persuasiveness of models, and the bias scores increase as dialogues progress. Our findings call for a more careful investigation on the use of scientific data for training LLMs.
Cascading Adversarial Bias from Injection to Distillation in Language Models
Model distillation has become essential for creating smaller, deployable language models that retain larger system capabilities. However, widespread deployment raises concerns about resilience to adversarial manipulation. This paper investigates vulnerability of distilled models to adversarial injection of biased content during training. We demonstrate that adversaries can inject subtle biases into teacher models through minimal data poisoning, which propagates to student models and becomes significantly amplified. We propose two propagation modes: Untargeted Propagation, where bias affects multiple tasks, and Targeted Propagation, focusing on specific tasks while maintaining normal behavior elsewhere. With only 25 poisoned samples (0.25% poisoning rate), student models generate biased responses 76.9% of the time in targeted scenarios - higher than 69.4% in teacher models. For untargeted propagation, adversarial bias appears 6x-29x more frequently in student models on unseen tasks. We validate findings across six bias types (targeted advertisements, phishing links, narrative manipulations, insecure coding practices), various distillation methods, and different modalities spanning text and code generation. Our evaluation reveals shortcomings in current defenses - perplexity filtering, bias detection systems, and LLM-based autorater frameworks - against these attacks. Results expose significant security vulnerabilities in distilled models, highlighting need for specialized safeguards. We propose practical design principles for building effective adversarial bias mitigation strategies.
Detecting Fallacies in Climate Misinformation: A Technocognitive Approach to Identifying Misleading Argumentation
Misinformation about climate change is a complex societal issue requiring holistic, interdisciplinary solutions at the intersection between technology and psychology. One proposed solution is a "technocognitive" approach, involving the synthesis of psychological and computer science research. Psychological research has identified that interventions in response to misinformation require both fact-based (e.g., factual explanations) and technique-based (e.g., explanations of misleading techniques) content. However, little progress has been made on documenting and detecting fallacies in climate misinformation. In this study, we apply a previously developed critical thinking methodology for deconstructing climate misinformation, in order to develop a dataset mapping different types of climate misinformation to reasoning fallacies. This dataset is used to train a model to detect fallacies in climate misinformation. Our study shows F1 scores that are 2.5 to 3.5 better than previous works. The fallacies that are easiest to detect include fake experts and anecdotal arguments, while fallacies that require background knowledge, such as oversimplification, misrepresentation, and slothful induction, are relatively more difficult to detect. This research lays the groundwork for development of solutions where automatically detected climate misinformation can be countered with generative technique-based corrections.
MAEA: Multimodal Attribution for Embodied AI
Understanding multimodal perception for embodied AI is an open question because such inputs may contain highly complementary as well as redundant information for the task. A relevant direction for multimodal policies is understanding the global trends of each modality at the fusion layer. To this end, we disentangle the attributions for visual, language, and previous action inputs across different policies trained on the ALFRED dataset. Attribution analysis can be utilized to rank and group the failure scenarios, investigate modeling and dataset biases, and critically analyze multimodal EAI policies for robustness and user trust before deployment. We present MAEA, a framework to compute global attributions per modality of any differentiable policy. In addition, we show how attributions enable lower-level behavior analysis in EAI policies for language and visual attributions.
Anti-DreamBooth: Protecting users from personalized text-to-image synthesis
Text-to-image diffusion models are nothing but a revolution, allowing anyone, even without design skills, to create realistic images from simple text inputs. With powerful personalization tools like DreamBooth, they can generate images of a specific person just by learning from his/her few reference images. However, when misused, such a powerful and convenient tool can produce fake news or disturbing content targeting any individual victim, posing a severe negative social impact. In this paper, we explore a defense system called Anti-DreamBooth against such malicious use of DreamBooth. The system aims to add subtle noise perturbation to each user's image before publishing in order to disrupt the generation quality of any DreamBooth model trained on these perturbed images. We investigate a wide range of algorithms for perturbation optimization and extensively evaluate them on two facial datasets over various text-to-image model versions. Despite the complicated formulation of DreamBooth and Diffusion-based text-to-image models, our methods effectively defend users from the malicious use of those models. Their effectiveness withstands even adverse conditions, such as model or prompt/term mismatching between training and testing. Our code will be available at https://github.com/VinAIResearch/Anti-DreamBooth.git{https://github.com/VinAIResearch/Anti-DreamBooth.git}.
Responsibility Perspective Transfer for Italian Femicide News
Different ways of linguistically expressing the same real-world event can lead to different perceptions of what happened. Previous work has shown that different descriptions of gender-based violence (GBV) influence the reader's perception of who is to blame for the violence, possibly reinforcing stereotypes which see the victim as partly responsible, too. As a contribution to raise awareness on perspective-based writing, and to facilitate access to alternative perspectives, we introduce the novel task of automatically rewriting GBV descriptions as a means to alter the perceived level of responsibility on the perpetrator. We present a quasi-parallel dataset of sentences with low and high perceived responsibility levels for the perpetrator, and experiment with unsupervised (mBART-based), zero-shot and few-shot (GPT3-based) methods for rewriting sentences. We evaluate our models using a questionnaire study and a suite of automatic metrics.
Look at the Variance! Efficient Black-box Explanations with Sobol-based Sensitivity Analysis
We describe a novel attribution method which is grounded in Sensitivity Analysis and uses Sobol indices. Beyond modeling the individual contributions of image regions, Sobol indices provide an efficient way to capture higher-order interactions between image regions and their contributions to a neural network's prediction through the lens of variance. We describe an approach that makes the computation of these indices efficient for high-dimensional problems by using perturbation masks coupled with efficient estimators to handle the high dimensionality of images. Importantly, we show that the proposed method leads to favorable scores on standard benchmarks for vision (and language models) while drastically reducing the computing time compared to other black-box methods -- even surpassing the accuracy of state-of-the-art white-box methods which require access to internal representations. Our code is freely available: https://github.com/fel-thomas/Sobol-Attribution-Method
AI Content Self-Detection for Transformer-based Large Language Models
The usage of generative artificial intelligence (AI) tools based on large language models, including ChatGPT, Bard, and Claude, for text generation has many exciting applications with the potential for phenomenal productivity gains. One issue is authorship attribution when using AI tools. This is especially important in an academic setting where the inappropriate use of generative AI tools may hinder student learning or stifle research by creating a large amount of automatically generated derivative work. Existing plagiarism detection systems can trace the source of submitted text but are not yet equipped with methods to accurately detect AI-generated text. This paper introduces the idea of direct origin detection and evaluates whether generative AI systems can recognize their output and distinguish it from human-written texts. We argue why current transformer-based models may be able to self-detect their own generated text and perform a small empirical study using zero-shot learning to investigate if that is the case. Results reveal varying capabilities of AI systems to identify their generated text. Google's Bard model exhibits the largest capability of self-detection with an accuracy of 94\%, followed by OpenAI's ChatGPT with 83\%. On the other hand, Anthropic's Claude model seems to be not able to self-detect.
On the Generalization Ability of Machine-Generated Text Detectors
The rise of large language models (LLMs) has raised concerns about machine-generated text (MGT), including ethical and practical issues like plagiarism and misinformation. Building a robust and highly generalizable MGT detection system has become increasingly important. This work investigates the generalization capabilities of MGT detectors in three aspects: First, we construct MGTAcademic, a large-scale dataset focused on academic writing, featuring human-written texts (HWTs) and MGTs across STEM, Humanities, and Social Sciences, paired with an extensible code framework for efficient benchmarking. Second, we investigate the transferability of detectors across domains and LLMs, leveraging fine-grained datasets to reveal insights into domain transferring and implementing few-shot techniques to improve the performance by roughly 13.2%. Third, we introduce a novel attribution task where models must adapt to new classes over time without (or with very limited) access to prior training data and benchmark detectors. We implement several adapting techniques to improve the performance by roughly 10% and highlight the inherent complexity of the task. Our findings provide insights into the generalization ability of MGT detectors across diverse scenarios and lay the foundation for building robust, adaptive detection systems.
Shortcomings of Top-Down Randomization-Based Sanity Checks for Evaluations of Deep Neural Network Explanations
While the evaluation of explanations is an important step towards trustworthy models, it needs to be done carefully, and the employed metrics need to be well-understood. Specifically model randomization testing is often overestimated and regarded as a sole criterion for selecting or discarding certain explanation methods. To address shortcomings of this test, we start by observing an experimental gap in the ranking of explanation methods between randomization-based sanity checks [1] and model output faithfulness measures (e.g. [25]). We identify limitations of model-randomization-based sanity checks for the purpose of evaluating explanations. Firstly, we show that uninformative attribution maps created with zero pixel-wise covariance easily achieve high scores in this type of checks. Secondly, we show that top-down model randomization preserves scales of forward pass activations with high probability. That is, channels with large activations have a high probility to contribute strongly to the output, even after randomization of the network on top of them. Hence, explanations after randomization can only be expected to differ to a certain extent. This explains the observed experimental gap. In summary, these results demonstrate the inadequacy of model-randomization-based sanity checks as a criterion to rank attribution methods.
Improving Robustness to Model Inversion Attacks via Mutual Information Regularization
This paper studies defense mechanisms against model inversion (MI) attacks -- a type of privacy attacks aimed at inferring information about the training data distribution given the access to a target machine learning model. Existing defense mechanisms rely on model-specific heuristics or noise injection. While being able to mitigate attacks, existing methods significantly hinder model performance. There remains a question of how to design a defense mechanism that is applicable to a variety of models and achieves better utility-privacy tradeoff. In this paper, we propose the Mutual Information Regularization based Defense (MID) against MI attacks. The key idea is to limit the information about the model input contained in the prediction, thereby limiting the ability of an adversary to infer the private training attributes from the model prediction. Our defense principle is model-agnostic and we present tractable approximations to the regularizer for linear regression, decision trees, and neural networks, which have been successfully attacked by prior work if not attached with any defenses. We present a formal study of MI attacks by devising a rigorous game-based definition and quantifying the associated information leakage. Our theoretical analysis sheds light on the inefficacy of DP in defending against MI attacks, which has been empirically observed in several prior works. Our experiments demonstrate that MID leads to state-of-the-art performance for a variety of MI attacks, target models and datasets.
Dataset Inference: Ownership Resolution in Machine Learning
With increasingly more data and computation involved in their training, machine learning models constitute valuable intellectual property. This has spurred interest in model stealing, which is made more practical by advances in learning with partial, little, or no supervision. Existing defenses focus on inserting unique watermarks in a model's decision surface, but this is insufficient: the watermarks are not sampled from the training distribution and thus are not always preserved during model stealing. In this paper, we make the key observation that knowledge contained in the stolen model's training set is what is common to all stolen copies. The adversary's goal, irrespective of the attack employed, is always to extract this knowledge or its by-products. This gives the original model's owner a strong advantage over the adversary: model owners have access to the original training data. We thus introduce dataset inference, the process of identifying whether a suspected model copy has private knowledge from the original model's dataset, as a defense against model stealing. We develop an approach for dataset inference that combines statistical testing with the ability to estimate the distance of multiple data points to the decision boundary. Our experiments on CIFAR10, SVHN, CIFAR100 and ImageNet show that model owners can claim with confidence greater than 99% that their model (or dataset as a matter of fact) was stolen, despite only exposing 50 of the stolen model's training points. Dataset inference defends against state-of-the-art attacks even when the adversary is adaptive. Unlike prior work, it does not require retraining or overfitting the defended model.
A Survey of AI-generated Text Forensic Systems: Detection, Attribution, and Characterization
We have witnessed lately a rapid proliferation of advanced Large Language Models (LLMs) capable of generating high-quality text. While these LLMs have revolutionized text generation across various domains, they also pose significant risks to the information ecosystem, such as the potential for generating convincing propaganda, misinformation, and disinformation at scale. This paper offers a review of AI-generated text forensic systems, an emerging field addressing the challenges of LLM misuses. We present an overview of the existing efforts in AI-generated text forensics by introducing a detailed taxonomy, focusing on three primary pillars: detection, attribution, and characterization. These pillars enable a practical understanding of AI-generated text, from identifying AI-generated content (detection), determining the specific AI model involved (attribution), and grouping the underlying intents of the text (characterization). Furthermore, we explore available resources for AI-generated text forensics research and discuss the evolving challenges and future directions of forensic systems in an AI era.
Defending Against Authorship Identification Attacks
Authorship identification has proven unsettlingly effective in inferring the identity of the author of an unsigned document, even when sensitive personal information has been carefully omitted. In the digital era, individuals leave a lasting digital footprint through their written content, whether it is posted on social media, stored on their employer's computers, or located elsewhere. When individuals need to communicate publicly yet wish to remain anonymous, there is little available to protect them from unwanted authorship identification. This unprecedented threat to privacy is evident in scenarios such as whistle-blowing. Proposed defenses against authorship identification attacks primarily aim to obfuscate one's writing style, thereby making it unlinkable to their pre-existing writing, while concurrently preserving the original meaning and grammatical integrity. The presented work offers a comprehensive review of the advancements in this research area spanning over the past two decades and beyond. It emphasizes the methodological frameworks of modification and generation-based strategies devised to evade authorship identification attacks, highlighting joint efforts from the differential privacy community. Limitations of current research are discussed, with a spotlight on open challenges and potential research avenues.
ACTI at EVALITA 2023: Overview of the Conspiracy Theory Identification Task
Conspiracy Theory Identication task is a new shared task proposed for the first time at the Evalita 2023. The ACTI challenge, based exclusively on comments published on conspiratorial channels of telegram, is divided into two subtasks: (i) Conspiratorial Content Classification: identifying conspiratorial content and (ii) Conspiratorial Category Classification about specific conspiracy theory classification. A total of fifteen teams participated in the task for a total of 81 submissions. We illustrate the best performing approaches were based on the utilization of large language models. We finally draw conclusions about the utilization of these models for counteracting the spreading of misinformation in online platforms.
Explaining Text Classifiers with Counterfactual Representations
One well motivated explanation method for classifiers leverages counterfactuals which are hypothetical events identical to real observations in all aspects except for one categorical feature. Constructing such counterfactual poses specific challenges for texts, however, as some attribute values may not necessarily align with plausible real-world events. In this paper we propose a simple method for generating counterfactuals by intervening in the space of text representations which bypasses this limitation. We argue that our interventions are minimally disruptive and that they are theoretically sound as they align with counterfactuals as defined in Pearl's causal inference framework. To validate our method, we first conduct experiments on a synthetic dataset of counterfactuals, allowing for a direct comparison between classifier predictions based on ground truth counterfactuals (obtained through explicit text interventions) and our counterfactuals, derived through interventions in the representation space. Second, we study a real world scenario where our counterfactuals can be leveraged both for explaining a classifier and for bias mitigation.
Evading Detection Actively: Toward Anti-Forensics against Forgery Localization
Anti-forensics seeks to eliminate or conceal traces of tampering artifacts. Typically, anti-forensic methods are designed to deceive binary detectors and persuade them to misjudge the authenticity of an image. However, to the best of our knowledge, no attempts have been made to deceive forgery detectors at the pixel level and mis-locate forged regions. Traditional adversarial attack methods cannot be directly used against forgery localization due to the following defects: 1) they tend to just naively induce the target forensic models to flip their pixel-level pristine or forged decisions; 2) their anti-forensics performance tends to be severely degraded when faced with the unseen forensic models; 3) they lose validity once the target forensic models are retrained with the anti-forensics images generated by them. To tackle the three defects, we propose SEAR (Self-supErvised Anti-foRensics), a novel self-supervised and adversarial training algorithm that effectively trains deep-learning anti-forensic models against forgery localization. SEAR sets a pretext task to reconstruct perturbation for self-supervised learning. In adversarial training, SEAR employs a forgery localization model as a supervisor to explore tampering features and constructs a deep-learning concealer to erase corresponding traces. We have conducted largescale experiments across diverse datasets. The experimental results demonstrate that, through the combination of self-supervised learning and adversarial learning, SEAR successfully deceives the state-of-the-art forgery localization methods, as well as tackle the three defects regarding traditional adversarial attack methods mentioned above.
Protecting Language Generation Models via Invisible Watermarking
Language generation models have been an increasingly powerful enabler for many applications. Many such models offer free or affordable API access, which makes them potentially vulnerable to model extraction attacks through distillation. To protect intellectual property (IP) and ensure fair use of these models, various techniques such as lexical watermarking and synonym replacement have been proposed. However, these methods can be nullified by obvious countermeasures such as "synonym randomization". To address this issue, we propose GINSEW, a novel method to protect text generation models from being stolen through distillation. The key idea of our method is to inject secret signals into the probability vector of the decoding steps for each target token. We can then detect the secret message by probing a suspect model to tell if it is distilled from the protected one. Experimental results show that GINSEW can effectively identify instances of IP infringement with minimal impact on the generation quality of protected APIs. Our method demonstrates an absolute improvement of 19 to 29 points on mean average precision (mAP) in detecting suspects compared to previous methods against watermark removal attacks.
AttnTrace: Attention-based Context Traceback for Long-Context LLMs
Long-context large language models (LLMs), such as Gemini-2.5-Pro and Claude-Sonnet-4, are increasingly used to empower advanced AI systems, including retrieval-augmented generation (RAG) pipelines and autonomous agents. In these systems, an LLM receives an instruction along with a context--often consisting of texts retrieved from a knowledge database or memory--and generates a response that is contextually grounded by following the instruction. Recent studies have designed solutions to trace back to a subset of texts in the context that contributes most to the response generated by the LLM. These solutions have numerous real-world applications, including performing post-attack forensic analysis and improving the interpretability and trustworthiness of LLM outputs. While significant efforts have been made, state-of-the-art solutions such as TracLLM often lead to a high computation cost, e.g., it takes TracLLM hundreds of seconds to perform traceback for a single response-context pair. In this work, we propose AttnTrace, a new context traceback method based on the attention weights produced by an LLM for a prompt. To effectively utilize attention weights, we introduce two techniques designed to enhance the effectiveness of AttnTrace, and we provide theoretical insights for our design choice. We also perform a systematic evaluation for AttnTrace. The results demonstrate that AttnTrace is more accurate and efficient than existing state-of-the-art context traceback methods. We also show that AttnTrace can improve state-of-the-art methods in detecting prompt injection under long contexts through the attribution-before-detection paradigm. As a real-world application, we demonstrate that AttnTrace can effectively pinpoint injected instructions in a paper designed to manipulate LLM-generated reviews. The code is at https://github.com/Wang-Yanting/AttnTrace.
Efficient Explanations from Empirical Explainers
Amid a discussion about Green AI in which we see explainability neglected, we explore the possibility to efficiently approximate computationally expensive explainers. To this end, we propose feature attribution modelling with Empirical Explainers. Empirical Explainers learn from data to predict the attribution maps of expensive explainers. We train and test Empirical Explainers in the language domain and find that they model their expensive counterparts surprisingly well, at a fraction of the cost. They could thus mitigate the computational burden of neural explanations significantly, in applications that tolerate an approximation error.
How does Burrows' Delta work on medieval Chinese poetic texts?
Burrows' Delta was introduced in 2002 and has proven to be an effective tool for author attribution. Despite the fact that these are different languages, they mostly belong to the same grammatical type and use the same graphic principle to convey speech in writing: a phonemic alphabet with word separation using spaces. The question I want to address in this article is how well this attribution method works with texts in a language with a different grammatical structure and a script based on different principles. There are fewer studies analyzing the effectiveness of the Delta method on Chinese texts than on texts in European languages. I believe that such a low level of attention to Delta from sinologists is due to the structure of the scientific field dedicated to medieval Chinese poetry. Clustering based on intertextual distances worked flawlessly. Delta produced results where clustering showed that the samples of one author were most similar to each other, and Delta never confused different poets. Despite the fact that I used an unconventional approach and applied the Delta method to a language poorly suited for it, the method demonstrated its effectiveness. Tang dynasty poets are correctly identified using Delta, and the empirical pattern observed for authors writing in European standard languages has been confirmed once again.
Integrating Pattern- and Fact-based Fake News Detection via Model Preference Learning
To defend against fake news, researchers have developed various methods based on texts. These methods can be grouped as 1) pattern-based methods, which focus on shared patterns among fake news posts rather than the claim itself; and 2) fact-based methods, which retrieve from external sources to verify the claim's veracity without considering patterns. The two groups of methods, which have different preferences of textual clues, actually play complementary roles in detecting fake news. However, few works consider their integration. In this paper, we study the problem of integrating pattern- and fact-based models into one framework via modeling their preference differences, i.e., making the pattern- and fact-based models focus on respective preferred parts in a post and mitigate interference from non-preferred parts as possible. To this end, we build a Preference-aware Fake News Detection Framework (Pref-FEND), which learns the respective preferences of pattern- and fact-based models for joint detection. We first design a heterogeneous dynamic graph convolutional network to generate the respective preference maps, and then use these maps to guide the joint learning of pattern- and fact-based models for final prediction. Experiments on two real-world datasets show that Pref-FEND effectively captures model preferences and improves the performance of models based on patterns, facts, or both.
Can Sensitive Information Be Deleted From LLMs? Objectives for Defending Against Extraction Attacks
Pretrained language models sometimes possess knowledge that we do not wish them to, including memorized personal information and knowledge that could be used to harm people. They can also output toxic or harmful text. To mitigate these safety and informational issues, we propose an attack-and-defense framework for studying the task of deleting sensitive information directly from model weights. We study direct edits to model weights because (1) this approach should guarantee that particular deleted information is never extracted by future prompt attacks, and (2) it should protect against whitebox attacks, which is necessary for making claims about safety/privacy in a setting where publicly available model weights could be used to elicit sensitive information. Our threat model assumes that an attack succeeds if the answer to a sensitive question is located among a set of B generated candidates, based on scenarios where the information would be insecure if the answer is among B candidates. Experimentally, we show that even state-of-the-art model editing methods such as ROME struggle to truly delete factual information from models like GPT-J, as our whitebox and blackbox attacks can recover "deleted" information from an edited model 38% of the time. These attacks leverage two key observations: (1) that traces of deleted information can be found in intermediate model hidden states, and (2) that applying an editing method for one question may not delete information across rephrased versions of the question. Finally, we provide new defense methods that protect against some extraction attacks, but we do not find a single universally effective defense method. Our results suggest that truly deleting sensitive information is a tractable but difficult problem, since even relatively low attack success rates have potentially severe societal implications for real-world deployment of language models.
Retrieval Augmented Fact Verification by Synthesizing Contrastive Arguments
The rapid propagation of misinformation poses substantial risks to public interest. To combat misinformation, large language models (LLMs) are adapted to automatically verify claim credibility. Nevertheless, existing methods heavily rely on the embedded knowledge within LLMs and / or black-box APIs for evidence collection, leading to subpar performance with smaller LLMs or upon unreliable context. In this paper, we propose retrieval augmented fact verification through the synthesis of contrasting arguments (RAFTS). Upon input claims, RAFTS starts with evidence retrieval, where we design a retrieval pipeline to collect and re-rank relevant documents from verifiable sources. Then, RAFTS forms contrastive arguments (i.e., supporting or refuting) conditioned on the retrieved evidence. In addition, RAFTS leverages an embedding model to identify informative demonstrations, followed by in-context prompting to generate the prediction and explanation. Our method effectively retrieves relevant documents as evidence and evaluates arguments from varying perspectives, incorporating nuanced information for fine-grained decision-making. Combined with informative in-context examples as prior, RAFTS achieves significant improvements to supervised and LLM baselines without complex prompts. We demonstrate the effectiveness of our method through extensive experiments, where RAFTS can outperform GPT-based methods with a significantly smaller 7B LLM.
All You Need is RAW: Defending Against Adversarial Attacks with Camera Image Pipelines
Existing neural networks for computer vision tasks are vulnerable to adversarial attacks: adding imperceptible perturbations to the input images can fool these methods to make a false prediction on an image that was correctly predicted without the perturbation. Various defense methods have proposed image-to-image mapping methods, either including these perturbations in the training process or removing them in a preprocessing denoising step. In doing so, existing methods often ignore that the natural RGB images in today's datasets are not captured but, in fact, recovered from RAW color filter array captures that are subject to various degradations in the capture. In this work, we exploit this RAW data distribution as an empirical prior for adversarial defense. Specifically, we proposed a model-agnostic adversarial defensive method, which maps the input RGB images to Bayer RAW space and back to output RGB using a learned camera image signal processing (ISP) pipeline to eliminate potential adversarial patterns. The proposed method acts as an off-the-shelf preprocessing module and, unlike model-specific adversarial training methods, does not require adversarial images to train. As a result, the method generalizes to unseen tasks without additional retraining. Experiments on large-scale datasets (e.g., ImageNet, COCO) for different vision tasks (e.g., classification, semantic segmentation, object detection) validate that the method significantly outperforms existing methods across task domains.
A Song of (Dis)agreement: Evaluating the Evaluation of Explainable Artificial Intelligence in Natural Language Processing
There has been significant debate in the NLP community about whether or not attention weights can be used as an explanation - a mechanism for interpreting how important each input token is for a particular prediction. The validity of "attention as explanation" has so far been evaluated by computing the rank correlation between attention-based explanations and existing feature attribution explanations using LSTM-based models. In our work, we (i) compare the rank correlation between five more recent feature attribution methods and two attention-based methods, on two types of NLP tasks, and (ii) extend this analysis to also include transformer-based models. We find that attention-based explanations do not correlate strongly with any recent feature attribution methods, regardless of the model or task. Furthermore, we find that none of the tested explanations correlate strongly with one another for the transformer-based model, leading us to question the underlying assumption that we should measure the validity of attention-based explanations based on how well they correlate with existing feature attribution explanation methods. After conducting experiments on five datasets using two different models, we argue that the community should stop using rank correlation as an evaluation metric for attention-based explanations. We suggest that researchers and practitioners should instead test various explanation methods and employ a human-in-the-loop process to determine if the explanations align with human intuition for the particular use case at hand.
Explaining image classifiers by removing input features using generative models
Perturbation-based explanation methods often measure the contribution of an input feature to an image classifier's outputs by heuristically removing it via e.g. blurring, adding noise, or graying out, which often produce unrealistic, out-of-samples. Instead, we propose to integrate a generative inpainter into three representative attribution methods to remove an input feature. Our proposed change improved all three methods in (1) generating more plausible counterfactual samples under the true data distribution; (2) being more accurate according to three metrics: object localization, deletion, and saliency metrics; and (3) being more robust to hyperparameter changes. Our findings were consistent across both ImageNet and Places365 datasets and two different pairs of classifiers and inpainters.
WILD: a new in-the-Wild Image Linkage Dataset for synthetic image attribution
Synthetic image source attribution is an open challenge, with an increasing number of image generators being released yearly. The complexity and the sheer number of available generative techniques, as well as the scarcity of high-quality open source datasets of diverse nature for this task, make training and benchmarking synthetic image source attribution models very challenging. WILD is a new in-the-Wild Image Linkage Dataset designed to provide a powerful training and benchmarking tool for synthetic image attribution models. The dataset is built out of a closed set of 10 popular commercial generators, which constitutes the training base of attribution models, and an open set of 10 additional generators, simulating a real-world in-the-wild scenario. Each generator is represented by 1,000 images, for a total of 10,000 images in the closed set and 10,000 images in the open set. Half of the images are post-processed with a wide range of operators. WILD allows benchmarking attribution models in a wide range of tasks, including closed and open set identification and verification, and robust attribution with respect to post-processing and adversarial attacks. Models trained on WILD are expected to benefit from the challenging scenario represented by the dataset itself. Moreover, an assessment of seven baseline methodologies on closed and open set attribution is presented, including robustness tests with respect to post-processing.
Conceptualizing Suicidal Behavior: Utilizing Explanations of Predicted Outcomes to Analyze Longitudinal Social Media Data
The COVID-19 pandemic has escalated mental health crises worldwide, with social isolation and economic instability contributing to a rise in suicidal behavior. Suicide can result from social factors such as shame, abuse, abandonment, and mental health conditions like depression, Post-Traumatic Stress Disorder (PTSD), Attention-Deficit/Hyperactivity Disorder (ADHD), anxiety disorders, and bipolar disorders. As these conditions develop, signs of suicidal ideation may manifest in social media interactions. Analyzing social media data using artificial intelligence (AI) techniques can help identify patterns of suicidal behavior, providing invaluable insights for suicide prevention agencies, professionals, and broader community awareness initiatives. Machine learning algorithms for this purpose require large volumes of accurately labeled data. Previous research has not fully explored the potential of incorporating explanations in analyzing and labeling longitudinal social media data. In this study, we employed a model explanation method, Layer Integrated Gradients, on top of a fine-tuned state-of-the-art language model, to assign each token from Reddit users' posts an attribution score for predicting suicidal ideation. By extracting and analyzing attributions of tokens from the data, we propose a methodology for preliminary screening of social media posts for suicidal ideation without using large language models during inference.
Causal Analysis for Robust Interpretability of Neural Networks
Interpreting the inner function of neural networks is crucial for the trustworthy development and deployment of these black-box models. Prior interpretability methods focus on correlation-based measures to attribute model decisions to individual examples. However, these measures are susceptible to noise and spurious correlations encoded in the model during the training phase (e.g., biased inputs, model overfitting, or misspecification). Moreover, this process has proven to result in noisy and unstable attributions that prevent any transparent understanding of the model's behavior. In this paper, we develop a robust interventional-based method grounded by causal analysis to capture cause-effect mechanisms in pre-trained neural networks and their relation to the prediction. Our novel approach relies on path interventions to infer the causal mechanisms within hidden layers and isolate relevant and necessary information (to model prediction), avoiding noisy ones. The result is task-specific causal explanatory graphs that can audit model behavior and express the actual causes underlying its performance. We apply our method to vision models trained on classification tasks. On image classification tasks, we provide extensive quantitative experiments to show that our approach can capture more stable and faithful explanations than standard attribution-based methods. Furthermore, the underlying causal graphs reveal the neural interactions in the model, making it a valuable tool in other applications (e.g., model repair).
Entropy-based Attention Regularization Frees Unintended Bias Mitigation from Lists
Natural Language Processing (NLP) models risk overfitting to specific terms in the training data, thereby reducing their performance, fairness, and generalizability. E.g., neural hate speech detection models are strongly influenced by identity terms like gay, or women, resulting in false positives, severe unintended bias, and lower performance. Most mitigation techniques use lists of identity terms or samples from the target domain during training. However, this approach requires a-priori knowledge and introduces further bias if important terms are neglected. Instead, we propose a knowledge-free Entropy-based Attention Regularization (EAR) to discourage overfitting to training-specific terms. An additional objective function penalizes tokens with low self-attention entropy. We fine-tune BERT via EAR: the resulting model matches or exceeds state-of-the-art performance for hate speech classification and bias metrics on three benchmark corpora in English and Italian. EAR also reveals overfitting terms, i.e., terms most likely to induce bias, to help identify their effect on the model, task, and predictions.
CopyScope: Model-level Copyright Infringement Quantification in the Diffusion Workflow
Web-based AI image generation has become an innovative art form that can generate novel artworks with the rapid development of the diffusion model. However, this new technique brings potential copyright infringement risks as it may incorporate the existing artworks without the owners' consent. Copyright infringement quantification is the primary and challenging step towards AI-generated image copyright traceability. Previous work only focused on data attribution from the training data perspective, which is unsuitable for tracing and quantifying copyright infringement in practice because of the following reasons: (1) the training datasets are not always available in public; (2) the model provider is the responsible party, not the image. Motivated by this, in this paper, we propose CopyScope, a new framework to quantify the infringement of AI-generated images from the model level. We first rigorously identify pivotal components within the AI image generation pipeline. Then, we propose to take advantage of Fr\'echet Inception Distance (FID) to effectively capture the image similarity that fits human perception naturally. We further propose the FID-based Shapley algorithm to evaluate the infringement contribution among models. Extensive experiments demonstrate that our work not only reveals the intricacies of infringement quantification but also effectively depicts the infringing models quantitatively, thus promoting accountability in AI image-generation tasks.
TracLLM: A Generic Framework for Attributing Long Context LLMs
Long context large language models (LLMs) are deployed in many real-world applications such as RAG, agent, and broad LLM-integrated applications. Given an instruction and a long context (e.g., documents, PDF files, webpages), a long context LLM can generate an output grounded in the provided context, aiming to provide more accurate, up-to-date, and verifiable outputs while reducing hallucinations and unsupported claims. This raises a research question: how to pinpoint the texts (e.g., sentences, passages, or paragraphs) in the context that contribute most to or are responsible for the generated output by an LLM? This process, which we call context traceback, has various real-world applications, such as 1) debugging LLM-based systems, 2) conducting post-attack forensic analysis for attacks (e.g., prompt injection attack, knowledge corruption attacks) to an LLM, and 3) highlighting knowledge sources to enhance the trust of users towards outputs generated by LLMs. When applied to context traceback for long context LLMs, existing feature attribution methods such as Shapley have sub-optimal performance and/or incur a large computational cost. In this work, we develop TracLLM, the first generic context traceback framework tailored to long context LLMs. Our framework can improve the effectiveness and efficiency of existing feature attribution methods. To improve the efficiency, we develop an informed search based algorithm in TracLLM. We also develop contribution score ensemble/denoising techniques to improve the accuracy of TracLLM. Our evaluation results show TracLLM can effectively identify texts in a long context that lead to the output of an LLM. Our code and data are at: https://github.com/Wang-Yanting/TracLLM.
PACE-LM: Prompting and Augmentation for Calibrated Confidence Estimation with GPT-4 in Cloud Incident Root Cause Analysis
Major cloud providers have employed advanced AI-based solutions like large language models to aid humans in identifying the root causes of cloud incidents. Despite the growing prevalence of AI-driven assistants in the root cause analysis process, their effectiveness in assisting on-call engineers is constrained by low accuracy due to the intrinsic difficulty of the task, a propensity for LLM-based approaches to hallucinate, and difficulties in distinguishing these well-disguised hallucinations. To address this challenge, we propose to perform confidence estimation for the predictions to help on-call engineers make decisions on whether to adopt the model prediction. Considering the black-box nature of many LLM-based root cause predictors, fine-tuning or temperature-scaling-based approaches are inapplicable. We therefore design an innovative confidence estimation framework based on prompting retrieval-augmented large language models (LLMs) that demand a minimal amount of information from the root cause predictor. This approach consists of two scoring phases: the LLM-based confidence estimator first evaluates its confidence in making judgments in the face of the current incident that reflects its ``grounded-ness" level in reference data, then rates the root cause prediction based on historical references. An optimization step combines these two scores for a final confidence assignment. We show that our method is able to produce calibrated confidence estimates for predicted root causes, validate the usefulness of retrieved historical data and the prompting strategy as well as the generalizability across different root cause prediction models. Our study takes an important move towards reliably and effectively embedding LLMs into cloud incident management systems.
Counterfactual Generation from Language Models
Understanding and manipulating the causal generation mechanisms in language models is essential for controlling their behavior. Previous work has primarily relied on techniques such as representation surgery -- e.g., model ablations or manipulation of linear subspaces tied to specific concepts -- to intervene on these models. To understand the impact of interventions precisely, it is useful to examine counterfactuals -- e.g., how a given sentence would have appeared had it been generated by the model following a specific intervention. We highlight that counterfactual reasoning is conceptually distinct from interventions, as articulated in Pearl's causal hierarchy. Based on this observation, we propose a framework for generating true string counterfactuals by reformulating language models as Generalized Structural-equation. Models using the Gumbel-max trick. This allows us to model the joint distribution over original strings and their counterfactuals resulting from the same instantiation of the sampling noise. We develop an algorithm based on hindsight Gumbel sampling that allows us to infer the latent noise variables and generate counterfactuals of observed strings. Our experiments demonstrate that the approach produces meaningful counterfactuals while at the same time showing that commonly used intervention techniques have considerable undesired side effects.
Concept Arithmetics for Circumventing Concept Inhibition in Diffusion Models
Motivated by ethical and legal concerns, the scientific community is actively developing methods to limit the misuse of Text-to-Image diffusion models for reproducing copyrighted, violent, explicit, or personal information in the generated images. Simultaneously, researchers put these newly developed safety measures to the test by assuming the role of an adversary to find vulnerabilities and backdoors in them. We use compositional property of diffusion models, which allows to leverage multiple prompts in a single image generation. This property allows us to combine other concepts, that should not have been affected by the inhibition, to reconstruct the vector, responsible for target concept generation, even though the direct computation of this vector is no longer accessible. We provide theoretical and empirical evidence why the proposed attacks are possible and discuss the implications of these findings for safe model deployment. We argue that it is essential to consider all possible approaches to image generation with diffusion models that can be employed by an adversary. Our work opens up the discussion about the implications of concept arithmetics and compositional inference for safety mechanisms in diffusion models. Content Advisory: This paper contains discussions and model-generated content that may be considered offensive. Reader discretion is advised. Project page: https://cs-people.bu.edu/vpetsiuk/arc
Reasoning-CV: Fine-tuning Powerful Reasoning LLMs for Knowledge-Assisted Claim Verification
Claim verification is essential in combating misinformation, and large language models (LLMs) have recently emerged in this area as powerful tools for assessing the veracity of claims using external knowledge. Existing LLM-based methods for claim verification typically adopt a Decompose-Then-Verify paradigm, which involves decomposing complex claims into several independent sub-claims and verifying each sub-claim separately. However, this paradigm often introduces errors during the claim decomposition process. To mitigate these errors, we propose to develop the Chain-of-Thought (CoT)-Verify paradigm, which leverages LLM reasoning methods to generate CoT-verification paths for the original complex claim without requiring decompositions into sub-claims and separate verification stages. The CoT-Verify paradigm allows us to propose a natural fine-tuning method called Reasoning-CV to enhance the verification capabilities in LLMs. Reasoning-CV includes a supervised fine-tuning (SFT) stage and a self-improvement direct preference optimization (DPO) stage. Utilizing only an 8B pre-trained LLM, Reasoning-CV demonstrates superior knowledge-assisted claim verification performances compared to existing Decompose-Then-Verify methods, as well as powerful black-box LLMs such as GPT-4o+CoT and o1-preview. Our code is available.
DoVer: Intervention-Driven Auto Debugging for LLM Multi-Agent Systems
Large language model (LLM)-based multi-agent systems are challenging to debug because failures often arise from long, branching interaction traces. The prevailing practice is to leverage LLMs for log-based failure localization, attributing errors to a specific agent and step. However, this paradigm has two key limitations: (i) log-only debugging lacks validation, producing untested hypotheses, and (ii) single-step or single-agent attribution is often ill-posed, as we find that multiple distinct interventions can independently repair the failed task. To address the first limitation, we introduce DoVer, an intervention-driven debugging framework, which augments hypothesis generation with active verification through targeted interventions (e.g., editing messages, altering plans). For the second limitation, rather than evaluating on attribution accuracy, we focus on measuring whether the system resolves the failure or makes quantifiable progress toward task success, reflecting a more outcome-oriented view of debugging. Within the Magnetic-One agent framework, on the datasets derived from GAIA and AssistantBench, DoVer flips 18-28% of failed trials into successes, achieves up to 16% milestone progress, and validates or refutes 30-60% of failure hypotheses. DoVer also performs effectively on a different dataset (GSMPlus) and agent framework (AG2), where it recovers 49% of failed trials. These results highlight intervention as a practical mechanism for improving reliability in agentic systems and open opportunities for more robust, scalable debugging methods for LLM-based multi-agent systems. Project website and code will be available at https://aka.ms/DoVer.
Debiasing Machine Learning Predictions for Causal Inference Without Additional Ground Truth Data: "One Map, Many Trials" in Satellite-Driven Poverty Analysis
Machine learning models trained on Earth observation data, such as satellite imagery, have demonstrated significant promise in predicting household-level wealth indices, enabling the creation of high-resolution wealth maps that can be leveraged across multiple causal trials. However, because standard training objectives prioritize overall predictive accuracy, these predictions inherently suffer from shrinkage toward the mean, leading to attenuated estimates of causal treatment effects and limiting their utility in policy. Existing debiasing methods, such as Prediction-Powered Inference, can handle this attenuation bias but require additional fresh ground-truth data at the downstream stage of causal inference, which restricts their applicability in data-scarce environments. Here, we introduce and evaluate two correction methods -- linear calibration correction and Tweedie's correction -- that substantially reduce prediction bias without relying on newly collected labeled data. Linear calibration corrects bias through a straightforward linear transformation derived from held-out calibration data, whereas Tweedie's correction leverages empirical Bayes principles to directly address shrinkage-induced biases by exploiting score functions derived from the model's learning patterns. Through analytical exercises and experiments using Demographic and Health Survey data, we demonstrate that the proposed methods meet or outperform existing approaches that either require (a) adjustments to training pipelines or (b) additional labeled data. These approaches may represent a promising avenue for improving the reliability of causal inference when direct outcome measures are limited or unavailable, enabling a "one map, many trials" paradigm where a single upstream data creation team produces predictions usable by many downstream teams across diverse ML pipelines.
DINER: Debiasing Aspect-based Sentiment Analysis with Multi-variable Causal Inference
Though notable progress has been made, neural-based aspect-based sentiment analysis (ABSA) models are prone to learn spurious correlations from annotation biases, resulting in poor robustness on adversarial data transformations. Among the debiasing solutions, causal inference-based methods have attracted much research attention, which can be mainly categorized into causal intervention methods and counterfactual reasoning methods. However, most of the present debiasing methods focus on single-variable causal inference, which is not suitable for ABSA with two input variables (the target aspect and the review). In this paper, we propose a novel framework based on multi-variable causal inference for debiasing ABSA. In this framework, different types of biases are tackled based on different causal intervention methods. For the review branch, the bias is modeled as indirect confounding from context, where backdoor adjustment intervention is employed for debiasing. For the aspect branch, the bias is described as a direct correlation with labels, where counterfactual reasoning is adopted for debiasing. Extensive experiments demonstrate the effectiveness of the proposed method compared to various baselines on the two widely used real-world aspect robustness test set datasets.
Reinforcement Learning-based Counter-Misinformation Response Generation: A Case Study of COVID-19 Vaccine Misinformation
The spread of online misinformation threatens public health, democracy, and the broader society. While professional fact-checkers form the first line of defense by fact-checking popular false claims, they do not engage directly in conversations with misinformation spreaders. On the other hand, non-expert ordinary users act as eyes-on-the-ground who proactively counter misinformation -- recent research has shown that 96% counter-misinformation responses are made by ordinary users. However, research also found that 2/3 times, these responses are rude and lack evidence. This work seeks to create a counter-misinformation response generation model to empower users to effectively correct misinformation. This objective is challenging due to the absence of datasets containing ground-truth of ideal counter-misinformation responses, and the lack of models that can generate responses backed by communication theories. In this work, we create two novel datasets of misinformation and counter-misinformation response pairs from in-the-wild social media and crowdsourcing from college-educated students. We annotate the collected data to distinguish poor from ideal responses that are factual, polite, and refute misinformation. We propose MisinfoCorrect, a reinforcement learning-based framework that learns to generate counter-misinformation responses for an input misinformation post. The model rewards the generator to increase the politeness, factuality, and refutation attitude while retaining text fluency and relevancy. Quantitative and qualitative evaluation shows that our model outperforms several baselines by generating high-quality counter-responses. This work illustrates the promise of generative text models for social good -- here, to help create a safe and reliable information ecosystem. The code and data is accessible on https://github.com/claws-lab/MisinfoCorrect.
Which Agent Causes Task Failures and When? On Automated Failure Attribution of LLM Multi-Agent Systems
Failure attribution in LLM multi-agent systems-identifying the agent and step responsible for task failures-provides crucial clues for systems debugging but remains underexplored and labor-intensive. In this paper, we propose and formulate a new research area: automated failure attribution for LLM multi-agent systems. To support this initiative, we introduce the Who&When dataset, comprising extensive failure logs from 127 LLM multi-agent systems with fine-grained annotations linking failures to specific agents and decisive error steps. Using the Who&When, we develop and evaluate three automated failure attribution methods, summarizing their corresponding pros and cons. The best method achieves 53.5% accuracy in identifying failure-responsible agents but only 14.2% in pinpointing failure steps, with some methods performing below random. Even SOTA reasoning models, such as OpenAI o1 and DeepSeek R1, fail to achieve practical usability. These results highlight the task's complexity and the need for further research in this area. Code and dataset are available at https://github.com/mingyin1/Agents_Failure_Attribution
Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey
Retrieval-Augmented Generation (RAG) is an advanced technique designed to address the challenges of Artificial Intelligence-Generated Content (AIGC). By integrating context retrieval into content generation, RAG provides reliable and up-to-date external knowledge, reduces hallucinations, and ensures relevant context across a wide range of tasks. However, despite RAG's success and potential, recent studies have shown that the RAG paradigm also introduces new risks, including robustness issues, privacy concerns, adversarial attacks, and accountability issues. Addressing these risks is critical for future applications of RAG systems, as they directly impact their trustworthiness. Although various methods have been developed to improve the trustworthiness of RAG methods, there is a lack of a unified perspective and framework for research in this topic. Thus, in this paper, we aim to address this gap by providing a comprehensive roadmap for developing trustworthy RAG systems. We place our discussion around five key perspectives: reliability, privacy, safety, fairness, explainability, and accountability. For each perspective, we present a general framework and taxonomy, offering a structured approach to understanding the current challenges, evaluating existing solutions, and identifying promising future research directions. To encourage broader adoption and innovation, we also highlight the downstream applications where trustworthy RAG systems have a significant impact.
Liars' Bench: Evaluating Lie Detectors for Language Models
Prior work has introduced techniques for detecting when large language models (LLMs) lie, that is, generating statements they believe are false. However, these techniques are typically validated in narrow settings that do not capture the diverse lies LLMs can generate. We introduce LIARS' BENCH, a testbed consisting of 72,863 examples of lies and honest responses generated by four open-weight models across seven datasets. Our settings capture qualitatively different types of lies and vary along two dimensions: the model's reason for lying and the object of belief targeted by the lie. Evaluating three black- and white-box lie detection techniques on LIARS' BENCH, we find that existing techniques systematically fail to identify certain types of lies, especially in settings where it's not possible to determine whether the model lied from the transcript alone. Overall, LIARS' BENCH reveals limitations in prior techniques and provides a practical testbed for guiding progress in lie detection.
Beyond Surface-Level Detection: Towards Cognitive-Driven Defense Against Jailbreak Attacks via Meta-Operations Reasoning
Defending large language models (LLMs) against jailbreak attacks is essential for their safe and reliable deployment. Existing defenses often rely on shallow pattern matching, which struggles to generalize to novel and unseen attack strategies. To address this challenge, we propose the Cognitive-Driven Defense (CDD) framework, which targets the underlying structure of jailbreak prompts by applying meta-operations, defined as basic manipulations that conceal harmful intent.CDD emulates human cognitive reasoning through a structured reasoning chain. It begins with a global perception of the prompt and follows with a localized analysis to uncover hidden manipulations. By applying supervised fine-tuning on this structured chain, the model learns to identify and reason about known manipulation patterns. To enhance generalization to unseen threats, an entropy-guided reinforcement learning algorithm (EG-GRPO) is introduced to encourage exploration of new types and variants of meta-operations. Experiments demonstrate that CDD can achieve state-of-the-art defense performance and exhibit strong generalization to unseen jailbreak attacks.
Understanding Retrieval Augmentation for Long-Form Question Answering
We present a study of retrieval-augmented language models (LMs) on long-form question answering. We analyze how retrieval augmentation impacts different LMs, by comparing answers generated from models while using the same evidence documents, and how differing quality of retrieval document set impacts the answers generated from the same LM. We study various attributes of generated answers (e.g., fluency, length, variance) with an emphasis on the attribution of generated long-form answers to in-context evidence documents. We collect human annotations of answer attribution and evaluate methods for automatically judging attribution. Our study provides new insights on how retrieval augmentation impacts long, knowledge-rich text generation of LMs. We further identify attribution patterns for long text generation and analyze the main culprits of attribution errors. Together, our analysis reveals how retrieval augmentation impacts long knowledge-rich text generation and provide directions for future work.
Deconfounding Legal Judgment Prediction for European Court of Human Rights Cases Towards Better Alignment with Experts
This work demonstrates that Legal Judgement Prediction systems without expert-informed adjustments can be vulnerable to shallow, distracting surface signals that arise from corpus construction, case distribution, and confounding factors. To mitigate this, we use domain expertise to strategically identify statistically predictive but legally irrelevant information. We adopt adversarial training to prevent the system from relying on it. We evaluate our deconfounded models by employing interpretability techniques and comparing to expert annotations. Quantitative experiments and qualitative analysis show that our deconfounded model consistently aligns better with expert rationales than baselines trained for prediction only. We further contribute a set of reference expert annotations to the validation and testing partitions of an existing benchmark dataset of European Court of Human Rights cases.
Certified Mitigation of Worst-Case LLM Copyright Infringement
The exposure of large language models (LLMs) to copyrighted material during pre-training raises concerns about unintentional copyright infringement post deployment. This has driven the development of "copyright takedown" methods, post-training approaches aimed at preventing models from generating content substantially similar to copyrighted ones. While current mitigation approaches are somewhat effective for average-case risks, we demonstrate that they overlook worst-case copyright risks exhibits by the existence of long, verbatim quotes from copyrighted sources. We propose BloomScrub, a remarkably simple yet highly effective inference-time approach that provides certified copyright takedown. Our method repeatedly interleaves quote detection with rewriting techniques to transform potentially infringing segments. By leveraging efficient data sketches (Bloom filters), our approach enables scalable copyright screening even for large-scale real-world corpora. When quotes beyond a length threshold cannot be removed, the system can abstain from responding, offering certified risk reduction. Experimental results show that BloomScrub reduces infringement risk, preserves utility, and accommodates different levels of enforcement stringency with adaptive abstention. Our results suggest that lightweight, inference-time methods can be surprisingly effective for copyright prevention.
Stochastic Parameter Decomposition
A key step in reverse engineering neural networks is to decompose them into simpler parts that can be studied in relative isolation. Linear parameter decomposition -- a framework that has been proposed to resolve several issues with current decomposition methods -- decomposes neural network parameters into a sum of sparsely used vectors in parameter space. However, the current main method in this framework, Attribution-based Parameter Decomposition (APD), is impractical on account of its computational cost and sensitivity to hyperparameters. In this work, we introduce Stochastic Parameter Decomposition (SPD), a method that is more scalable and robust to hyperparameters than APD, which we demonstrate by decomposing models that are slightly larger and more complex than was possible to decompose with APD. We also show that SPD avoids other issues, such as shrinkage of the learned parameters, and better identifies ground truth mechanisms in toy models. By bridging causal mediation analysis and network decomposition methods, this demonstration opens up new research possibilities in mechanistic interpretability by removing barriers to scaling linear parameter decomposition methods to larger models. We release a library for running SPD and reproducing our experiments at https://github.com/goodfire-ai/spd.
ASVspoof 2019: A large-scale public database of synthesized, converted and replayed speech
Automatic speaker verification (ASV) is one of the most natural and convenient means of biometric person recognition. Unfortunately, just like all other biometric systems, ASV is vulnerable to spoofing, also referred to as "presentation attacks." These vulnerabilities are generally unacceptable and call for spoofing countermeasures or "presentation attack detection" systems. In addition to impersonation, ASV systems are vulnerable to replay, speech synthesis, and voice conversion attacks. The ASVspoof 2019 edition is the first to consider all three spoofing attack types within a single challenge. While they originate from the same source database and same underlying protocol, they are explored in two specific use case scenarios. Spoofing attacks within a logical access (LA) scenario are generated with the latest speech synthesis and voice conversion technologies, including state-of-the-art neural acoustic and waveform model techniques. Replay spoofing attacks within a physical access (PA) scenario are generated through carefully controlled simulations that support much more revealing analysis than possible previously. Also new to the 2019 edition is the use of the tandem detection cost function metric, which reflects the impact of spoofing and countermeasures on the reliability of a fixed ASV system. This paper describes the database design, protocol, spoofing attack implementations, and baseline ASV and countermeasure results. It also describes a human assessment on spoofed data in logical access. It was demonstrated that the spoofing data in the ASVspoof 2019 database have varied degrees of perceived quality and similarity to the target speakers, including spoofed data that cannot be differentiated from bona-fide utterances even by human subjects.
Does Reasoning Introduce Bias? A Study of Social Bias Evaluation and Mitigation in LLM Reasoning
Recent advances in large language models (LLMs) have enabled automatic generation of chain-of-thought (CoT) reasoning, leading to strong performance on tasks such as math and code. However, when reasoning steps reflect social stereotypes (e.g., those related to gender, race or age), they can reinforce harmful associations and lead to misleading conclusions. We present the first systematic evaluation of social bias within LLM-generated reasoning, using the BBQ dataset to analyze both prediction accuracy and bias. Our study spans a wide range of mainstream reasoning models, including instruction-tuned and CoT-augmented variants of DeepSeek-R1 (8B/32B), ChatGPT, and other open-source LLMs. We quantify how biased reasoning steps correlate with incorrect predictions and often lead to stereotype expression. To mitigate reasoning-induced bias, we propose Answer Distribution as Bias Proxy (ADBP), a lightweight mitigation method that detects bias by tracking how model predictions change across incremental reasoning steps. ADBP outperforms a stereotype-free baseline in most cases, mitigating bias and improving the accuracy of LLM outputs. Code will be released upon paper acceptance.
"Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in LLM-Generated Reference Letters
Large Language Models (LLMs) have recently emerged as an effective tool to assist individuals in writing various types of content, including professional documents such as recommendation letters. Though bringing convenience, this application also introduces unprecedented fairness concerns. Model-generated reference letters might be directly used by users in professional scenarios. If underlying biases exist in these model-constructed letters, using them without scrutinization could lead to direct societal harms, such as sabotaging application success rates for female applicants. In light of this pressing issue, it is imminent and necessary to comprehensively study fairness issues and associated harms in this real-world use case. In this paper, we critically examine gender biases in LLM-generated reference letters. Drawing inspiration from social science findings, we design evaluation methods to manifest biases through 2 dimensions: (1) biases in language style and (2) biases in lexical content. We further investigate the extent of bias propagation by analyzing the hallucination bias of models, a term that we define to be bias exacerbation in model-hallucinated contents. Through benchmarking evaluation on 2 popular LLMs- ChatGPT and Alpaca, we reveal significant gender biases in LLM-generated recommendation letters. Our findings not only warn against using LLMs for this application without scrutinization, but also illuminate the importance of thoroughly studying hidden biases and harms in LLM-generated professional documents.
