new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

CARIL: Confidence-Aware Regression in Imitation Learning for Autonomous Driving

End-to-end vision-based imitation learning has demonstrated promising results in autonomous driving by learning control commands directly from expert demonstrations. However, traditional approaches rely on either regressionbased models, which provide precise control but lack confidence estimation, or classification-based models, which offer confidence scores but suffer from reduced precision due to discretization. This limitation makes it challenging to quantify the reliability of predicted actions and apply corrections when necessary. In this work, we introduce a dual-head neural network architecture that integrates both regression and classification heads to improve decision reliability in imitation learning. The regression head predicts continuous driving actions, while the classification head estimates confidence, enabling a correction mechanism that adjusts actions in low-confidence scenarios, enhancing driving stability. We evaluate our approach in a closed-loop setting within the CARLA simulator, demonstrating its ability to detect uncertain actions, estimate confidence, and apply real-time corrections. Experimental results show that our method reduces lane deviation and improves trajectory accuracy by up to 50%, outperforming conventional regression-only models. These findings highlight the potential of classification-guided confidence estimation in enhancing the robustness of vision-based imitation learning for autonomous driving. The source code is available at https://github.com/ElaheDlv/Confidence_Aware_IL.

  • 3 authors
·
Mar 2, 2025

Automated speech- and text-based classification of neuropsychiatric conditions in a multidiagnostic setting

Speech patterns have been identified as potential diagnostic markers for neuropsychiatric conditions. However, most studies only compare a single clinical group to healthy controls, whereas clinical practice often requires differentiating between multiple potential diagnoses (multiclass settings). To address this, we assembled a dataset of repeated recordings from 420 participants (67 with major depressive disorder, 106 with schizophrenia and 46 with autism, as well as matched controls), and tested the performance of a range of conventional machine learning models and advanced Transformer models on both binary and multiclass classification, based on voice and text features. While binary models performed comparably to previous research (F1 scores between 0.54-0.75 for autism spectrum disorder, ASD; 0.67-0.92 for major depressive disorder, MDD; and 0.71-0.83 for schizophrenia); when differentiating between multiple diagnostic groups performance decreased markedly (F1 scores between 0.35-0.44 for ASD, 0.57-0.75 for MDD, 0.15-0.66 for schizophrenia, and 0.38-0.52 macro F1). Combining voice and text-based models yielded increased performance, suggesting that they capture complementary diagnostic information. Our results indicate that models trained on binary classification may learn to rely on markers of generic differences between clinical and non-clinical populations, or markers of clinical features that overlap across conditions, rather than identifying markers specific to individual conditions. We provide recommendations for future research in the field, suggesting increased focus on developing larger transdiagnostic datasets that include more fine-grained clinical features, and that can support the development of models that better capture the complexity of neuropsychiatric conditions and naturalistic diagnostic assessment.

  • 11 authors
·
Jan 13, 2023

PETGEN: Personalized Text Generation Attack on Deep Sequence Embedding-based Classification Models

What should a malicious user write next to fool a detection model? Identifying malicious users is critical to ensure the safety and integrity of internet platforms. Several deep learning-based detection models have been created. However, malicious users can evade deep detection models by manipulating their behavior, rendering these models of little use. The vulnerability of such deep detection models against adversarial attacks is unknown. Here we create a novel adversarial attack model against deep user sequence embedding based classification models, which use the sequence of user posts to generate user embeddings and detect malicious users. In the attack, the adversary generates a new post to fool the classifier. We propose a novel end-to-end Personalized Text Generation Attack model, called PETGEN, that simultaneously reduces the efficacy of the detection model and generates posts that have several key desirable properties. Specifically, PETGEN generates posts that are personalized to the user's writing style, have knowledge about a given target context, are aware of the user's historical posts on the target context, and encapsulate the user's recent topical interests. We conduct extensive experiments on two real-world datasets (Yelp and Wikipedia, both with ground-truth of malicious users) to show that PETGEN significantly reduces the performance of popular deep user sequence embedding-based classification models. PETGEN outperforms five attack baselines in terms of text quality and attack efficacy in both white-box and black-box classifier settings. Overall, this work paves the path towards the next generation of adversary-aware sequence classification models.

  • 3 authors
·
Sep 14, 2021

Refining Focus in AI for Lung Cancer: Comparing Lesion-Centric and Chest-Region Models with Performance Insights from Internal and External Validation

Background: AI-based classification models are essential for improving lung cancer diagnosis. However, the relative performance of lesion-level versus chest-region models in internal and external datasets remains unclear. Purpose: This study evaluates the performance of lesion-level and chest-region models for lung cancer classification, comparing their effectiveness across internal Duke Lung Nodule Dataset 2024 (DLND24) and external (LUNA16, NLST) datasets, with a focus on subgroup analyses by demographics, histology, and imaging characteristics. Materials and Methods: Two AI models were trained: one using lesion-centric patches (64,64,64) and the other using chest-region patches (512,512,8). Internal validation was conducted on DLND24, while external validation utilized LUNA16 and NLST datasets. The models performances were assessed using AUC-ROC, with subgroup analyses for demographic, clinical, and imaging factors. Statistical comparisons were performed using DeLongs test. Gradient-based visualizations and probability distribution were further used for analysis. Results: The lesion-level model consistently outperformed the chest-region model across datasets. In internal validation, the lesion-level model achieved an AUC of 0.71(CI: 0.61-0.81), compared to 0.68(0.57-0.77) for the chest-region model. External validation showed similar trends, with AUCs of 0.90(0.87-0.92) and 0.81(0.79-0.82) on LUNA16 and NLST, respectively. Subgroup analyses revealed significant advantages for lesion-level models in certain histological subtypes (adenocarcinoma) and imaging conditions (CT manufacturers). Conclusion: Lesion-level models demonstrate superior classification performance, especially for external datasets and challenging subgroups, suggesting their clinical utility for precision lung cancer diagnostics.

  • 1 authors
·
Nov 25, 2024

Review GIDE -- Restaurant Review Gastrointestinal Illness Detection and Extraction with Large Language Models

Foodborne gastrointestinal (GI) illness is a common cause of ill health in the UK. However, many cases do not interact with the healthcare system, posing significant challenges for traditional surveillance methods. The growth of publicly available online restaurant reviews and advancements in large language models (LLMs) present potential opportunities to extend disease surveillance by identifying public reports of GI illness. In this study, we introduce a novel annotation schema, developed with experts in GI illness, applied to the Yelp Open Dataset of reviews. Our annotations extend beyond binary disease detection, to include detailed extraction of information on symptoms and foods. We evaluate the performance of open-weight LLMs across these three tasks: GI illness detection, symptom extraction, and food extraction. We compare this performance to RoBERTa-based classification models fine-tuned specifically for these tasks. Our results show that using prompt-based approaches, LLMs achieve micro-F1 scores of over 90% for all three of our tasks. Using prompting alone, we achieve micro-F1 scores that exceed those of smaller fine-tuned models. We further demonstrate the robustness of LLMs in GI illness detection across three bias-focused experiments. Our results suggest that publicly available review text and LLMs offer substantial potential for public health surveillance of GI illness by enabling highly effective extraction of key information. While LLMs appear to exhibit minimal bias in processing, the inherent limitations of restaurant review data highlight the need for cautious interpretation of results.

  • 8 authors
·
Mar 12, 2025

Multi-Label Zero-Shot Product Attribute-Value Extraction

E-commerce platforms should provide detailed product descriptions (attribute values) for effective product search and recommendation. However, attribute value information is typically not available for new products. To predict unseen attribute values, large quantities of labeled training data are needed to train a traditional supervised learning model. Typically, it is difficult, time-consuming, and costly to manually label large quantities of new product profiles. In this paper, we propose a novel method to efficiently and effectively extract unseen attribute values from new products in the absence of labeled data (zero-shot setting). We propose HyperPAVE, a multi-label zero-shot attribute value extraction model that leverages inductive inference in heterogeneous hypergraphs. In particular, our proposed technique constructs heterogeneous hypergraphs to capture complex higher-order relations (i.e. user behavior information) to learn more accurate feature representations for graph nodes. Furthermore, our proposed HyperPAVE model uses an inductive link prediction mechanism to infer future connections between unseen nodes. This enables HyperPAVE to identify new attribute values without the need for labeled training data. We conduct extensive experiments with ablation studies on different categories of the MAVE dataset. The results demonstrate that our proposed HyperPAVE model significantly outperforms existing classification-based, generation-based large language models for attribute value extraction in the zero-shot setting.

  • 2 authors
·
Feb 13, 2024

Personality Style Recognition via Machine Learning: Identifying Anaclitic and Introjective Personality Styles from Patients' Speech

In disentangling the heterogeneity observed in psychopathology, personality of the patients is considered crucial. While it has been demonstrated that personality traits are reflected in the language used by a patient, we hypothesize that this enables automatic inference of the personality type directly from speech utterances, potentially more accurately than through a traditional questionnaire-based approach explicitly designed for personality classification. To validate this hypothesis, we adopt natural language processing (NLP) and standard machine learning tools for classification. We test this on a dataset of recorded clinical diagnostic interviews (CDI) on a sample of 79 patients diagnosed with major depressive disorder (MDD) -- a condition for which differentiated treatment based on personality styles has been advocated -- and classified into anaclitic and introjective personality styles. We start by analyzing the interviews to see which linguistic features are associated with each style, in order to gain a better understanding of the styles. Then, we develop automatic classifiers based on (a) standardized questionnaire responses; (b) basic text features, i.e., TF-IDF scores of words and word sequences; (c) more advanced text features, using LIWC (linguistic inquiry and word count) and context-aware features using BERT (bidirectional encoder representations from transformers); (d) audio features. We find that automated classification with language-derived features (i.e., based on LIWC) significantly outperforms questionnaire-based classification models. Furthermore, the best performance is achieved by combining LIWC with the questionnaire features. This suggests that more work should be put into developing linguistically based automated techniques for characterizing personality, however questionnaires still to some extent complement such methods.

  • 6 authors
·
Nov 7, 2023

Symmetrical Flow Matching: Unified Image Generation, Segmentation, and Classification with Score-Based Generative Models

Flow Matching has emerged as a powerful framework for learning continuous transformations between distributions, enabling high-fidelity generative modeling. This work introduces Symmetrical Flow Matching (SymmFlow), a new formulation that unifies semantic segmentation, classification, and image generation within a single model. Using a symmetric learning objective, SymmFlow models forward and reverse transformations jointly, ensuring bi-directional consistency, while preserving sufficient entropy for generative diversity. A new training objective is introduced to explicitly retain semantic information across flows, featuring efficient sampling while preserving semantic structure, allowing for one-step segmentation and classification without iterative refinement. Unlike previous approaches that impose strict one-to-one mapping between masks and images, SymmFlow generalizes to flexible conditioning, supporting both pixel-level and image-level class labels. Experimental results on various benchmarks demonstrate that SymmFlow achieves state-of-the-art performance on semantic image synthesis, obtaining FID scores of 11.9 on CelebAMask-HQ and 7.0 on COCO-Stuff with only 25 inference steps. Additionally, it delivers competitive results on semantic segmentation and shows promising capabilities in classification tasks. The code will be publicly available.

  • 4 authors
·
Jun 12, 2025

Fairness and Robustness of CLIP-Based Models for Chest X-rays

Motivated by the strong performance of CLIP-based models in natural image-text domains, recent efforts have adapted these architectures to medical tasks, particularly in radiology, where large paired datasets of images and reports, such as chest X-rays, are available. While these models have shown encouraging results in terms of accuracy and discriminative performance, their fairness and robustness in the different clinical tasks remain largely underexplored. In this study, we extensively evaluate six widely used CLIP-based models on chest X-ray classification using three publicly available datasets: MIMIC-CXR, NIH-CXR14, and NEATX. We assess the models fairness across six conditions and patient subgroups based on age, sex, and race. Additionally, we assess the robustness to shortcut learning by evaluating performance on pneumothorax cases with and without chest drains. Our results indicate performance gaps between patients of different ages, but more equitable results for the other attributes. Moreover, all models exhibit lower performance on images without chest drains, suggesting reliance on spurious correlations. We further complement the performance analysis with a study of the embeddings generated by the models. While the sensitive attributes could be classified from the embeddings, we do not see such patterns using PCA, showing the limitations of these visualisation techniques when assessing models. Our code is available at https://github.com/TheoSourget/clip_cxr_fairness

  • 6 authors
·
Jul 28, 2025

Interpretable graph-based models on multimodal biomedical data integration: A technical review and benchmarking

Integrating heterogeneous biomedical data including imaging, omics, and clinical records supports accurate diagnosis and personalised care. Graph-based models fuse such non-Euclidean data by capturing spatial and relational structure, yet clinical uptake requires regulator-ready interpretability. We present the first technical survey of interpretable graph based models for multimodal biomedical data, covering 26 studies published between Jan 2019 and Sep 2024. Most target disease classification, notably cancer and rely on static graphs from simple similarity measures, while graph-native explainers are rare; post-hoc methods adapted from non-graph domains such as gradient saliency, and SHAP predominate. We group existing approaches into four interpretability families, outline trends such as graph-in-graph hierarchies, knowledge-graph edges, and dynamic topology learning, and perform a practical benchmark. Using an Alzheimer disease cohort, we compare Sensitivity Analysis, Gradient Saliency, SHAP and Graph Masking. SHAP and Sensitivity Analysis recover the broadest set of known AD pathways and Gene-Ontology terms, whereas Gradient Saliency and Graph Masking surface complementary metabolic and transport signatures. Permutation tests show all four beat random gene sets, but with distinct trade-offs: SHAP and Graph Masking offer deeper biology at higher compute cost, while Gradient Saliency and Sensitivity Analysis are quicker though coarser. We also provide a step-by-step flowchart covering graph construction, explainer choice and resource budgeting to help researchers balance transparency and performance. This review synthesises the state of interpretable graph learning for multimodal medicine, benchmarks leading techniques, and charts future directions, from advanced XAI tools to under-studied diseases, serving as a concise reference for method developers and translational scientists.

  • 6 authors
·
May 3, 2025

Neural models for Factual Inconsistency Classification with Explanations

Factual consistency is one of the most important requirements when editing high quality documents. It is extremely important for automatic text generation systems like summarization, question answering, dialog modeling, and language modeling. Still, automated factual inconsistency detection is rather under-studied. Existing work has focused on (a) finding fake news keeping a knowledge base in context, or (b) detecting broad contradiction (as part of natural language inference literature). However, there has been no work on detecting and explaining types of factual inconsistencies in text, without any knowledge base in context. In this paper, we leverage existing work in linguistics to formally define five types of factual inconsistencies. Based on this categorization, we contribute a novel dataset, FICLE (Factual Inconsistency CLassification with Explanation), with ~8K samples where each sample consists of two sentences (claim and context) annotated with type and span of inconsistency. When the inconsistency relates to an entity type, it is labeled as well at two levels (coarse and fine-grained). Further, we leverage this dataset to train a pipeline of four neural models to predict inconsistency type with explanations, given a (claim, context) sentence pair. Explanations include inconsistent claim fact triple, inconsistent context span, inconsistent claim component, coarse and fine-grained inconsistent entity types. The proposed system first predicts inconsistent spans from claim and context; and then uses them to predict inconsistency types and inconsistent entity types (when inconsistency is due to entities). We experiment with multiple Transformer-based natural language classification as well as generative models, and find that DeBERTa performs the best. Our proposed methods provide a weighted F1 of ~87% for inconsistency type classification across the five classes.

  • 7 authors
·
Jun 15, 2023

TabEBM: A Tabular Data Augmentation Method with Distinct Class-Specific Energy-Based Models

Data collection is often difficult in critical fields such as medicine, physics, and chemistry. As a result, classification methods usually perform poorly with these small datasets, leading to weak predictive performance. Increasing the training set with additional synthetic data, similar to data augmentation in images, is commonly believed to improve downstream classification performance. However, current tabular generative methods that learn either the joint distribution p(x, y) or the class-conditional distribution p(x mid y) often overfit on small datasets, resulting in poor-quality synthetic data, usually worsening classification performance compared to using real data alone. To solve these challenges, we introduce TabEBM, a novel class-conditional generative method using Energy-Based Models (EBMs). Unlike existing methods that use a shared model to approximate all class-conditional densities, our key innovation is to create distinct EBM generative models for each class, each modelling its class-specific data distribution individually. This approach creates robust energy landscapes, even in ambiguous class distributions. Our experiments show that TabEBM generates synthetic data with higher quality and better statistical fidelity than existing methods. When used for data augmentation, our synthetic data consistently improves the classification performance across diverse datasets of various sizes, especially small ones. Code is available at https://github.com/andreimargeloiu/TabEBM.

  • 4 authors
·
Sep 24, 2024

FER-YOLO-Mamba: Facial Expression Detection and Classification Based on Selective State Space

Facial Expression Recognition (FER) plays a pivotal role in understanding human emotional cues. However, traditional FER methods based on visual information have some limitations, such as preprocessing, feature extraction, and multi-stage classification procedures. These not only increase computational complexity but also require a significant amount of computing resources. Considering Convolutional Neural Network (CNN)-based FER schemes frequently prove inadequate in identifying the deep, long-distance dependencies embedded within facial expression images, and the Transformer's inherent quadratic computational complexity, this paper presents the FER-YOLO-Mamba model, which integrates the principles of Mamba and YOLO technologies to facilitate efficient coordination in facial expression image recognition and localization. Within the FER-YOLO-Mamba model, we further devise a FER-YOLO-VSS dual-branch module, which combines the inherent strengths of convolutional layers in local feature extraction with the exceptional capability of State Space Models (SSMs) in revealing long-distance dependencies. To the best of our knowledge, this is the first Vision Mamba model designed for facial expression detection and classification. To evaluate the performance of the proposed FER-YOLO-Mamba model, we conducted experiments on two benchmark datasets, RAF-DB and SFEW. The experimental results indicate that the FER-YOLO-Mamba model achieved better results compared to other models. The code is available from https://github.com/SwjtuMa/FER-YOLO-Mamba.

  • 4 authors
·
May 2, 2024

From scratch to silver: Creating trustworthy training data for patent-SDG classification using Large Language Models

Classifying patents by their relevance to the UN Sustainable Development Goals (SDGs) is crucial for tracking how innovation addresses global challenges. However, the absence of a large, labeled dataset limits the use of supervised learning. Existing methods, such as keyword searches, transfer learning, and citation-based heuristics, lack scalability and generalizability. This paper frames patent-to-SDG classification as a weak supervision problem, using citations from patents to SDG-tagged scientific publications (NPL citations) as a noisy initial signal. To address its sparsity and noise, we develop a composite labeling function (LF) that uses large language models (LLMs) to extract structured concepts, namely functions, solutions, and applications, from patents and SDG papers based on a patent ontology. Cross-domain similarity scores are computed and combined using a rank-based retrieval approach. The LF is calibrated via a custom positive-only loss that aligns with known NPL-SDG links without penalizing discovery of new SDG associations. The result is a silver-standard, soft multi-label dataset mapping patents to SDGs, enabling the training of effective multi-label regression models. We validate our approach through two complementary strategies: (1) internal validation against held-out NPL-based labels, where our method outperforms several baselines including transformer-based models, and zero-shot LLM; and (2) external validation using network modularity in patent citation, co-inventor, and co-applicant graphs, where our labels reveal greater thematic, cognitive, and organizational coherence than traditional technological classifications. These results show that weak supervision and semantic alignment can enhance SDG classification at scale.

  • 2 authors
·
Sep 11, 2025

MalCL: Leveraging GAN-Based Generative Replay to Combat Catastrophic Forgetting in Malware Classification

Continual Learning (CL) for malware classification tackles the rapidly evolving nature of malware threats and the frequent emergence of new types. Generative Replay (GR)-based CL systems utilize a generative model to produce synthetic versions of past data, which are then combined with new data to retrain the primary model. Traditional machine learning techniques in this domain often struggle with catastrophic forgetting, where a model's performance on old data degrades over time. In this paper, we introduce a GR-based CL system that employs Generative Adversarial Networks (GANs) with feature matching loss to generate high-quality malware samples. Additionally, we implement innovative selection schemes for replay samples based on the model's hidden representations. Our comprehensive evaluation across Windows and Android malware datasets in a class-incremental learning scenario -- where new classes are introduced continuously over multiple tasks -- demonstrates substantial performance improvements over previous methods. For example, our system achieves an average accuracy of 55% on Windows malware samples, significantly outperforming other GR-based models by 28%. This study provides practical insights for advancing GR-based malware classification systems. The implementation is available at https://github.com/MalwareReplayGAN/MalCLThe code will be made public upon the presentation of the paper.

  • 5 authors
·
Jan 2, 2025

LiPCoT: Linear Predictive Coding based Tokenizer for Self-supervised Learning of Time Series Data via Language Models

Language models have achieved remarkable success in various natural language processing tasks. However, their application to time series data, a crucial component in many domains, remains limited. This paper proposes LiPCoT (Linear Predictive Coding based Tokenizer for time series), a novel tokenizer that encodes time series data into a sequence of tokens, enabling self-supervised learning of time series using existing Language model architectures such as BERT. Unlike traditional time series tokenizers that rely heavily on CNN encoder for time series feature generation, LiPCoT employs stochastic modeling through linear predictive coding to create a latent space for time series providing a compact yet rich representation of the inherent stochastic nature of the data. Furthermore, LiPCoT is computationally efficient and can effectively handle time series data with varying sampling rates and lengths, overcoming common limitations of existing time series tokenizers. In this proof-of-concept work, we present the effectiveness of LiPCoT in classifying Parkinson's disease (PD) using an EEG dataset from 46 participants. In particular, we utilize LiPCoT to encode EEG data into a small vocabulary of tokens and then use BERT for self-supervised learning and the downstream task of PD classification. We benchmark our approach against several state-of-the-art CNN-based deep learning architectures for PD detection. Our results reveal that BERT models utilizing self-supervised learning outperformed the best-performing existing method by 7.1% in precision, 2.3% in recall, 5.5% in accuracy, 4% in AUC, and 5% in F1-score highlighting the potential for self-supervised learning even on small datasets. Our work will inform future foundational models for time series, particularly for self-supervised learning.

  • 1 authors
·
Aug 14, 2024

Exposing Text-Image Inconsistency Using Diffusion Models

In the battle against widespread online misinformation, a growing problem is text-image inconsistency, where images are misleadingly paired with texts with different intent or meaning. Existing classification-based methods for text-image inconsistency can identify contextual inconsistencies but fail to provide explainable justifications for their decisions that humans can understand. Although more nuanced, human evaluation is impractical at scale and susceptible to errors. To address these limitations, this study introduces D-TIIL (Diffusion-based Text-Image Inconsistency Localization), which employs text-to-image diffusion models to localize semantic inconsistencies in text and image pairs. These models, trained on large-scale datasets act as ``omniscient" agents that filter out irrelevant information and incorporate background knowledge to identify inconsistencies. In addition, D-TIIL uses text embeddings and modified image regions to visualize these inconsistencies. To evaluate D-TIIL's efficacy, we introduce a new TIIL dataset containing 14K consistent and inconsistent text-image pairs. Unlike existing datasets, TIIL enables assessment at the level of individual words and image regions and is carefully designed to represent various inconsistencies. D-TIIL offers a scalable and evidence-based approach to identifying and localizing text-image inconsistency, providing a robust framework for future research combating misinformation.

  • 6 authors
·
Apr 27, 2024

EcoVerse: An Annotated Twitter Dataset for Eco-Relevance Classification, Environmental Impact Analysis, and Stance Detection

Anthropogenic ecological crisis constitutes a significant challenge that all within the academy must urgently face, including the Natural Language Processing (NLP) community. While recent years have seen increasing work revolving around climate-centric discourse, crucial environmental and ecological topics outside of climate change remain largely unaddressed, despite their prominent importance. Mainstream NLP tasks, such as sentiment analysis, dominate the scene, but there remains an untouched space in the literature involving the analysis of environmental impacts of certain events and practices. To address this gap, this paper presents EcoVerse, an annotated English Twitter dataset of 3,023 tweets spanning a wide spectrum of environmental topics. We propose a three-level annotation scheme designed for Eco-Relevance Classification, Stance Detection, and introducing an original approach for Environmental Impact Analysis. We detail the data collection, filtering, and labeling process that led to the creation of the dataset. Remarkable Inter-Annotator Agreement indicates that the annotation scheme produces consistent annotations of high quality. Subsequent classification experiments using BERT-based models, including ClimateBERT, are presented. These yield encouraging results, while also indicating room for a model specifically tailored for environmental texts. The dataset is made freely available to stimulate further research.

  • 4 authors
·
Apr 7, 2024

Exploiting Contextual Target Attributes for Target Sentiment Classification

Existing PTLM-based models for TSC can be categorized into two groups: 1) fine-tuning-based models that adopt PTLM as the context encoder; 2) prompting-based models that transfer the classification task to the text/word generation task. In this paper, we present a new perspective of leveraging PTLM for TSC: simultaneously leveraging the merits of both language modeling and explicit target-context interactions via contextual target attributes. Specifically, we design the domain- and target-constrained cloze test, which can leverage the PTLMs' strong language modeling ability to generate the given target's attributes pertaining to the review context. The attributes contain the background and property information of the target, which can help to enrich the semantics of the review context and the target. To exploit the attributes for tackling TSC, we first construct a heterogeneous information graph by treating the attributes as nodes and combining them with (1) the syntax graph automatically produced by the off-the-shelf dependency parser and (2) the semantics graph of the review context, which is derived from the self-attention mechanism. Then we propose a heterogeneous information gated graph convolutional network to model the interactions among the attribute information, the syntactic information, and the contextual information. The experimental results on three benchmark datasets demonstrate the superiority of our model, which achieves new state-of-the-art performance.

  • 2 authors
·
Dec 21, 2023

Evaluating Large Language Models for Phishing Detection, Self-Consistency, Faithfulness, and Explainability

Phishing attacks remain one of the most prevalent and persistent cybersecurity threat with attackers continuously evolving and intensifying tactics to evade the general detection system. Despite significant advances in artificial intelligence and machine learning, faithfully reproducing the interpretable reasoning with classification and explainability that underpin phishing judgments remains challenging. Due to recent advancement in Natural Language Processing, Large Language Models (LLMs) show a promising direction and potential for improving domain specific phishing classification tasks. However, enhancing the reliability and robustness of classification models requires not only accurate predictions from LLMs but also consistent and trustworthy explanations aligning with those predictions. Therefore, a key question remains: can LLMs not only classify phishing emails accurately but also generate explanations that are reliably aligned with their predictions and internally self-consistent? To answer these questions, we have fine-tuned transformer based models, including BERT, Llama models, and Wizard, to improve domain relevance and make them more tailored to phishing specific distinctions, using Binary Sequence Classification, Contrastive Learning (CL) and Direct Preference Optimization (DPO). To that end, we examined their performance in phishing classification and explainability by applying the ConsistenCy measure based on SHAPley values (CC SHAP), which measures prediction explanation token alignment to test the model's internal faithfulness and consistency and uncover the rationale behind its predictions and reasoning. Overall, our findings show that Llama models exhibit stronger prediction explanation token alignment with higher CC SHAP scores despite lacking reliable decision making accuracy, whereas Wizard achieves better prediction accuracy but lower CC SHAP scores.

  • 3 authors
·
Jun 16, 2025

Assessing Algorithmic Bias in Language-Based Depression Detection: A Comparison of DNN and LLM Approaches

This paper investigates algorithmic bias in language-based models for automated depression detection, focusing on socio-demographic disparities related to gender and race/ethnicity. Models trained using deep neural networks (DNN) based embeddings are compared to few-shot learning approaches with large language models (LLMs), evaluating both performance and fairness on clinical interview transcripts from the Distress Analysis Interview Corpus/Wizard-of-Oz (DAIC-WOZ). To mitigate bias, fairness-aware loss functions are applied to DNN-based models, while in-context learning with varied prompt framing and shot counts is explored for LLMs. Results indicate that LLMs outperform DNN-based models in depression classification, particularly for underrepresented groups such as Hispanic participants. LLMs also exhibit reduced gender bias compared to DNN-based embeddings, though racial disparities persist. Among fairness-aware techniques for mitigating bias in DNN-based embeddings, the worst-group loss, which is designed to minimize loss for the worst-performing demographic group, achieves a better balance between performance and fairness. In contrast, the fairness-regularized loss minimizes loss across all groups but performs less effectively. In LLMs, guided prompting with ethical framing helps mitigate gender bias in the 1-shot setting. However, increasing the number of shots does not lead to further reductions in disparities. For race/ethnicity, neither prompting strategy nor increasing N in N-shot learning effectively reduces disparities.

  • 3 authors
·
Sep 30, 2025

Training-free Test-time Improvement for Explainable Medical Image Classification

Deep learning-based medical image classification techniques are rapidly advancing in medical image analysis, making it crucial to develop accurate and trustworthy models that can be efficiently deployed across diverse clinical scenarios. Concept Bottleneck Models (CBMs), which first predict a set of explainable concepts from images and then perform classification based on these concepts, are increasingly being adopted for explainable medical image classification. However, the inherent explainability of CBMs introduces new challenges when deploying trained models to new environments. Variations in imaging protocols and staining methods may induce concept-level shifts, such as alterations in color distribution and scale. Furthermore, since CBM training requires explicit concept annotations, fine-tuning models solely with image-level labels could compromise concept prediction accuracy and faithfulness - a critical limitation given the high cost of acquiring expert-annotated concept labels in medical domains. To address these challenges, we propose a training-free confusion concept identification strategy. By leveraging minimal new data (e.g., 4 images per class) with only image-level labels, our approach enhances out-of-domain performance without sacrificing source domain accuracy through two key operations: masking misactivated confounding concepts and amplifying under-activated discriminative concepts. The efficacy of our method is validated on both skin and white blood cell images. Our code is available at: https://github.com/riverback/TF-TTI-XMed.

  • 5 authors
·
Jun 22, 2025 1

Image Complexity-Aware Adaptive Retrieval for Efficient Vision-Language Models

Vision transformers in vision-language models apply uniform computational effort across all images, expending 175.33 GFLOPs (ViT-L/14) whether analysing a straightforward product photograph or a complex street scene. We propose ICAR (Image Complexity-Aware Retrieval), which enables vision transformers to use less compute for simple images whilst processing complex images through their full network depth. The key challenge is maintaining cross-modal alignment: embeddings from different processing depths must remain compatible for text matching. ICAR solves this through dual-path training that produces compatible embeddings from both reduced-compute and full-compute processing. This maintains compatibility between image representations and text embeddings in the same semantic space, whether an image exits early or processes fully. Unlike existing two-stage approaches that require expensive reranking, ICAR enables direct image-text matching without additional overhead. To determine how much compute to use, we develop ConvNeXt-IC, which treats image complexity assessment as a classification task. By applying modern classifier backbones rather than specialised architectures, ConvNeXt-IC achieves state-of-the-art performance with 0.959 correlation with human judgement (Pearson) and 4.4x speedup. Evaluated on standard benchmarks augmented with real-world web data, ICAR achieves 20% practical speedup while maintaining category-level performance and 95% of instance-level performance, enabling sustainable scaling of vision-language systems.

  • 2 authors
·
Dec 17, 2025

WellDunn: On the Robustness and Explainability of Language Models and Large Language Models in Identifying Wellness Dimensions

Language Models (LMs) are being proposed for mental health applications where the heightened risk of adverse outcomes means predictive performance may not be a sufficient litmus test of a model's utility in clinical practice. A model that can be trusted for practice should have a correspondence between explanation and clinical determination, yet no prior research has examined the attention fidelity of these models and their effect on ground truth explanations. We introduce an evaluation design that focuses on the robustness and explainability of LMs in identifying Wellness Dimensions (WDs). We focus on two existing mental health and well-being datasets: (a) Multi-label Classification-based MultiWD, and (b) WellXplain for evaluating attention mechanism veracity against expert-labeled explanations. The labels are based on Halbert Dunn's theory of wellness, which gives grounding to our evaluation. We reveal four surprising results about LMs/LLMs: (1) Despite their human-like capabilities, GPT-3.5/4 lag behind RoBERTa, and MedAlpaca, a fine-tuned LLM on WellXplain fails to deliver any remarkable improvements in performance or explanations. (2) Re-examining LMs' predictions based on a confidence-oriented loss function reveals a significant performance drop. (3) Across all LMs/LLMs, the alignment between attention and explanations remains low, with LLMs scoring a dismal 0.0. (4) Most mental health-specific LMs/LLMs overlook domain-specific knowledge and undervalue explanations, causing these discrepancies. This study highlights the need for further research into their consistency and explanations in mental health and well-being.

  • 6 authors
·
Jun 17, 2024

Spatial-Mamba: Effective Visual State Space Models via Structure-aware State Fusion

Selective state space models (SSMs), such as Mamba, highly excel at capturing long-range dependencies in 1D sequential data, while their applications to 2D vision tasks still face challenges. Current visual SSMs often convert images into 1D sequences and employ various scanning patterns to incorporate local spatial dependencies. However, these methods are limited in effectively capturing the complex image spatial structures and the increased computational cost caused by the lengthened scanning paths. To address these limitations, we propose Spatial-Mamba, a novel approach that establishes neighborhood connectivity directly in the state space. Instead of relying solely on sequential state transitions, we introduce a structure-aware state fusion equation, which leverages dilated convolutions to capture image spatial structural dependencies, significantly enhancing the flow of visual contextual information. Spatial-Mamba proceeds in three stages: initial state computation in a unidirectional scan, spatial context acquisition through structure-aware state fusion, and final state computation using the observation equation. Our theoretical analysis shows that Spatial-Mamba unifies the original Mamba and linear attention under the same matrix multiplication framework, providing a deeper understanding of our method. Experimental results demonstrate that Spatial-Mamba, even with a single scan, attains or surpasses the state-of-the-art SSM-based models in image classification, detection and segmentation. Source codes and trained models can be found at https://github.com/EdwardChasel/Spatial-Mamba.

  • 5 authors
·
Oct 19, 2024

SwinCheX: Multi-label classification on chest X-ray images with transformers

According to the considerable growth in the avail of chest X-ray images in diagnosing various diseases, as well as gathering extensive datasets, having an automated diagnosis procedure using deep neural networks has occupied the minds of experts. Most of the available methods in computer vision use a CNN backbone to acquire high accuracy on the classification problems. Nevertheless, recent researches show that transformers, established as the de facto method in NLP, can also outperform many CNN-based models in vision. This paper proposes a multi-label classification deep model based on the Swin Transformer as the backbone to achieve state-of-the-art diagnosis classification. It leverages Multi-Layer Perceptron, also known as MLP, for the head architecture. We evaluate our model on one of the most widely-used and largest x-ray datasets called "Chest X-ray14," which comprises more than 100,000 frontal/back-view images from over 30,000 patients with 14 famous chest diseases. Our model has been tested with several number of MLP layers for the head setting, each achieves a competitive AUC score on all classes. Comprehensive experiments on Chest X-ray14 have shown that a 3-layer head attains state-of-the-art performance with an average AUC score of 0.810, compared to the former SOTA average AUC of 0.799. We propose an experimental setup for the fair benchmarking of existing methods, which could be used as a basis for the future studies. Finally, we followed up our results by confirming that the proposed method attends to the pathologically relevant areas of the chest.

  • 5 authors
·
Jun 8, 2022

Multi-Task Text Classification using Graph Convolutional Networks for Large-Scale Low Resource Language

Graph Convolutional Networks (GCN) have achieved state-of-art results on single text classification tasks like sentiment analysis, emotion detection, etc. However, the performance is achieved by testing and reporting on resource-rich languages like English. Applying GCN for multi-task text classification is an unexplored area. Moreover, training a GCN or adopting an English GCN for Indian languages is often limited by data availability, rich morphological variation, syntax, and semantic differences. In this paper, we study the use of GCN for the Telugu language in single and multi-task settings for four natural language processing (NLP) tasks, viz. sentiment analysis (SA), emotion identification (EI), hate-speech (HS), and sarcasm detection (SAR). In order to evaluate the performance of GCN with one of the Indian languages, Telugu, we analyze the GCN based models with extensive experiments on four downstream tasks. In addition, we created an annotated Telugu dataset, TEL-NLP, for the four NLP tasks. Further, we propose a supervised graph reconstruction method, Multi-Task Text GCN (MT-Text GCN) on the Telugu that leverages to simultaneously (i) learn the low-dimensional word and sentence graph embeddings from word-sentence graph reconstruction using graph autoencoder (GAE) and (ii) perform multi-task text classification using these latent sentence graph embeddings. We argue that our proposed MT-Text GCN achieves significant improvements on TEL-NLP over existing Telugu pretrained word embeddings, and multilingual pretrained Transformer models: mBERT, and XLM-R. On TEL-NLP, we achieve a high F1-score for four NLP tasks: SA (0.84), EI (0.55), HS (0.83) and SAR (0.66). Finally, we show our model's quantitative and qualitative analysis on the four NLP tasks in Telugu.

  • 5 authors
·
May 2, 2022

MatSciBench: Benchmarking the Reasoning Ability of Large Language Models in Materials Science

Large Language Models (LLMs) have demonstrated remarkable abilities in scientific reasoning, yet their reasoning capabilities in materials science remain underexplored. To fill this gap, we introduce MatSciBench, a comprehensive college-level benchmark comprising 1,340 problems that span the essential subdisciplines of materials science. MatSciBench features a structured and fine-grained taxonomy that categorizes materials science questions into 6 primary fields and 31 sub-fields, and includes a three-tier difficulty classification based on the reasoning length required to solve each question. MatSciBench provides detailed reference solutions enabling precise error analysis and incorporates multimodal reasoning through visual contexts in numerous questions. Evaluations of leading models reveal that even the highest-performing model, Gemini-2.5-Pro, achieves under 80% accuracy on college-level materials science questions, highlighting the complexity of MatSciBench. Our systematic analysis of different reasoning strategie--basic chain-of-thought, tool augmentation, and self-correction--demonstrates that no single method consistently excels across all scenarios. We further analyze performance by difficulty level, examine trade-offs between efficiency and accuracy, highlight the challenges inherent in multimodal reasoning tasks, analyze failure modes across LLMs and reasoning methods, and evaluate the influence of retrieval-augmented generation. MatSciBench thus establishes a comprehensive and solid benchmark for assessing and driving improvements in the scientific reasoning capabilities of LLMs within the materials science domain.

  • 11 authors
·
Oct 14, 2025

Correctness Assessment of Code Generated by Large Language Models Using Internal Representations

Ensuring the correctness of code generated by Large Language Models (LLMs) presents a significant challenge in AI-driven software development. Existing approaches predominantly rely on black-box (closed-box) approaches that evaluate correctness post-generation, failing to utilize the rich insights embedded in the LLMs' internal states during code generation. In this paper, we introduce OPENIA, a novel white-box (open-box) framework that leverages these internal representations to assess the correctness of LLM-generated code. OPENIA systematically analyzes the intermediate states of representative open-source LLMs specialized for code, including DeepSeek-Coder, CodeLlama, and MagicCoder, across diverse code generation benchmarks. Our empirical analysis reveals that these internal representations encode latent information, which strongly correlates with the correctness of the generated code. Building on these insights, OPENIA uses a white-box/open-box approach to make informed predictions about code correctness, offering significant advantages in adaptability and robustness over traditional classification-based methods and zero-shot approaches. Experimental results demonstrate that OPENIA consistently outperforms baseline models, achieving higher accuracy, precision, recall, and F1-Scores with up to a 2X improvement in standalone code generation and a 46% enhancement in repository-specific scenarios. By unlocking the potential of in-process signals, OPENIA paves the way for more proactive and efficient quality assurance mechanisms in LLM-assisted code generation.

  • 5 authors
·
Jan 22, 2025

From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models

Data visualization in the form of charts plays a pivotal role in data analysis, offering critical insights and aiding in informed decision-making. Automatic chart understanding has witnessed significant advancements with the rise of large foundation models in recent years. Foundation models, such as large language models, have revolutionized various natural language processing tasks and are increasingly being applied to chart understanding tasks. This survey paper provides a comprehensive overview of the recent developments, challenges, and future directions in chart understanding within the context of these foundation models. We review fundamental building blocks crucial for studying chart understanding tasks. Additionally, we explore various tasks and their evaluation metrics and sources of both charts and textual inputs. Various modeling strategies are then examined, encompassing both classification-based and generation-based approaches, along with tool augmentation techniques that enhance chart understanding performance. Furthermore, we discuss the state-of-the-art performance of each task and discuss how we can improve the performance. Challenges and future directions are addressed, highlighting the importance of several topics, such as domain-specific charts, lack of efforts in developing evaluation metrics, and agent-oriented settings. This survey paper serves as a comprehensive resource for researchers and practitioners in the fields of natural language processing, computer vision, and data analysis, providing valuable insights and directions for future research in chart understanding leveraging large foundation models. The studies mentioned in this paper, along with emerging new research, will be continually updated at: https://github.com/khuangaf/Awesome-Chart-Understanding.

  • 8 authors
·
Mar 18, 2024

ASiT: Local-Global Audio Spectrogram vIsion Transformer for Event Classification

Transformers, which were originally developed for natural language processing, have recently generated significant interest in the computer vision and audio communities due to their flexibility in learning long-range relationships. Constrained by the data hungry nature of transformers and the limited amount of labelled data, most transformer-based models for audio tasks are finetuned from ImageNet pretrained models, despite the huge gap between the domain of natural images and audio. This has motivated the research in self-supervised pretraining of audio transformers, which reduces the dependency on large amounts of labeled data and focuses on extracting concise representations of audio spectrograms. In this paper, we propose Local-Global Audio Spectrogram vIsion Transformer, namely ASiT, a novel self-supervised learning framework that captures local and global contextual information by employing group masked model learning and self-distillation. We evaluate our pretrained models on both audio and speech classification tasks, including audio event classification, keyword spotting, and speaker identification. We further conduct comprehensive ablation studies, including evaluations of different pretraining strategies. The proposed ASiT framework significantly boosts the performance on all tasks and sets a new state-of-the-art performance in five audio and speech classification tasks, outperforming recent methods, including the approaches that use additional datasets for pretraining.

  • 5 authors
·
Nov 23, 2022

Explainable Depression Symptom Detection in Social Media

Users of social platforms often perceive these sites as supportive spaces to post about their mental health issues. Those conversations contain important traces about individuals' health risks. Recently, researchers have exploited this online information to construct mental health detection models, which aim to identify users at risk on platforms like Twitter, Reddit or Facebook. Most of these models are centred on achieving good classification results, ignoring the explainability and interpretability of the decisions. Recent research has pointed out the importance of using clinical markers, such as the use of symptoms, to improve trust in the computational models by health professionals. In this paper, we propose using transformer-based architectures to detect and explain the appearance of depressive symptom markers in the users' writings. We present two approaches: i) train a model to classify, and another one to explain the classifier's decision separately and ii) unify the two tasks simultaneously using a single model. Additionally, for this latter manner, we also investigated the performance of recent conversational LLMs when using in-context learning. Our natural language explanations enable clinicians to interpret the models' decisions based on validated symptoms, enhancing trust in the automated process. We evaluate our approach using recent symptom-based datasets, employing both offline and expert-in-the-loop metrics to assess the quality of the explanations generated by our models. The experimental results show that it is possible to achieve good classification results while generating interpretable symptom-based explanations.

  • 3 authors
·
Oct 20, 2023

VisionGPT-3D: A Generalized Multimodal Agent for Enhanced 3D Vision Understanding

The evolution of text to visual components facilitates people's daily lives, such as generating image, videos from text and identifying the desired elements within the images. Computer vision models involving the multimodal abilities in the previous days are focused on image detection, classification based on well-defined objects. Large language models (LLMs) introduces the transformation from nature language to visual objects, which present the visual layout for text contexts. OpenAI GPT-4 has emerged as the pinnacle in LLMs, while the computer vision (CV) domain boasts a plethora of state-of-the-art (SOTA) models and algorithms to convert 2D images to their 3D representations. However, the mismatching between the algorithms with the problem could lead to undesired results. In response to this challenge, we propose an unified VisionGPT-3D framework to consolidate the state-of-the-art vision models, thereby facilitating the development of vision-oriented AI. VisionGPT-3D provides a versatile multimodal framework building upon the strengths of multimodal foundation models. It seamlessly integrates various SOTA vision models and brings the automation in the selection of SOTA vision models, identifies the suitable 3D mesh creation algorithms corresponding to 2D depth maps analysis, generates optimal results based on diverse multimodal inputs such as text prompts. Keywords: VisionGPT-3D, 3D vision understanding, Multimodal agent

  • 10 authors
·
Mar 14, 2024 1

MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer

The recently proposed data augmentation TransMix employs attention labels to help visual transformers (ViT) achieve better robustness and performance. However, TransMix is deficient in two aspects: 1) The image cropping method of TransMix may not be suitable for ViTs. 2) At the early stage of training, the model produces unreliable attention maps. TransMix uses unreliable attention maps to compute mixed attention labels that can affect the model. To address the aforementioned issues, we propose MaskMix and Progressive Attention Labeling (PAL) in image and label space, respectively. In detail, from the perspective of image space, we design MaskMix, which mixes two images based on a patch-like grid mask. In particular, the size of each mask patch is adjustable and is a multiple of the image patch size, which ensures each image patch comes from only one image and contains more global contents. From the perspective of label space, we design PAL, which utilizes a progressive factor to dynamically re-weight the attention weights of the mixed attention label. Finally, we combine MaskMix and Progressive Attention Labeling as our new data augmentation method, named MixPro. The experimental results show that our method can improve various ViT-based models at scales on ImageNet classification (73.8\% top-1 accuracy based on DeiT-T for 300 epochs). After being pre-trained with MixPro on ImageNet, the ViT-based models also demonstrate better transferability to semantic segmentation, object detection, and instance segmentation. Furthermore, compared to TransMix, MixPro also shows stronger robustness on several benchmarks. The code is available at https://github.com/fistyee/MixPro.

  • 5 authors
·
Apr 24, 2023

RAFT: Rationale adaptor for few-shot abusive language detection

Abusive language is a concerning problem in online social media. Past research on detecting abusive language covers different platforms, languages, demographies, etc. However, models trained using these datasets do not perform well in cross-domain evaluation settings. To overcome this, a common strategy is to use a few samples from the target domain to train models to get better performance in that domain (cross-domain few-shot training). However, this might cause the models to overfit the artefacts of those samples. A compelling solution could be to guide the models toward rationales, i.e., spans of text that justify the text's label. This method has been found to improve model performance in the in-domain setting across various NLP tasks. In this paper, we propose RAFT (Rationale Adaptor for Few-shoT classification) for abusive language detection. We first build a multitask learning setup to jointly learn rationales, targets, and labels, and find a significant improvement of 6% macro F1 on the rationale detection task over training solely rationale classifiers. We introduce two rationale-integrated BERT-based architectures (the RAFT models) and evaluate our systems over five different abusive language datasets, finding that in the few-shot classification setting, RAFT-based models outperform baseline models by about 7% in macro F1 scores and perform competitively to models finetuned on other source domains. Furthermore, RAFT-based models outperform LIME/SHAP-based approaches in terms of plausibility and are close in performance in terms of faithfulness.

  • 5 authors
·
Nov 30, 2022

VOLO: Vision Outlooker for Visual Recognition

Visual recognition has been dominated by convolutional neural networks (CNNs) for years. Though recently the prevailing vision transformers (ViTs) have shown great potential of self-attention based models in ImageNet classification, their performance is still inferior to that of the latest SOTA CNNs if no extra data are provided. In this work, we try to close the performance gap and demonstrate that attention-based models are indeed able to outperform CNNs. We find a major factor limiting the performance of ViTs for ImageNet classification is their low efficacy in encoding fine-level features into the token representations. To resolve this, we introduce a novel outlook attention and present a simple and general architecture, termed Vision Outlooker (VOLO). Unlike self-attention that focuses on global dependency modeling at a coarse level, the outlook attention efficiently encodes finer-level features and contexts into tokens, which is shown to be critically beneficial to recognition performance but largely ignored by the self-attention. Experiments show that our VOLO achieves 87.1% top-1 accuracy on ImageNet-1K classification, which is the first model exceeding 87% accuracy on this competitive benchmark, without using any extra training data In addition, the pre-trained VOLO transfers well to downstream tasks, such as semantic segmentation. We achieve 84.3% mIoU score on the cityscapes validation set and 54.3% on the ADE20K validation set. Code is available at https://github.com/sail-sg/volo.

  • 5 authors
·
Jun 24, 2021

Dynamic Spectrum Mixer for Visual Recognition

Recently, MLP-based vision backbones have achieved promising performance in several visual recognition tasks. However, the existing MLP-based methods directly aggregate tokens with static weights, leaving the adaptability to different images untouched. Moreover, Recent research demonstrates that MLP-Transformer is great at creating long-range dependencies but ineffective at catching high frequencies that primarily transmit local information, which prevents it from applying to the downstream dense prediction tasks, such as semantic segmentation. To address these challenges, we propose a content-adaptive yet computationally efficient structure, dubbed Dynamic Spectrum Mixer (DSM). The DSM represents token interactions in the frequency domain by employing the Discrete Cosine Transform, which can learn long-term spatial dependencies with log-linear complexity. Furthermore, a dynamic spectrum weight generation layer is proposed as the spectrum bands selector, which could emphasize the informative frequency bands while diminishing others. To this end, the technique can efficiently learn detailed features from visual input that contains both high- and low-frequency information. Extensive experiments show that DSM is a powerful and adaptable backbone for a range of visual recognition tasks. Particularly, DSM outperforms previous transformer-based and MLP-based models, on image classification, object detection, and semantic segmentation tasks, such as 83.8 \% top-1 accuracy on ImageNet, and 49.9 \% mIoU on ADE20K.

  • 2 authors
·
Sep 13, 2023

MeDSLIP: Medical Dual-Stream Language-Image Pre-training for Fine-grained Alignment

Vision-language pre-training (VLP) models have shown significant advancements in the medical domain. Yet, most VLP models align raw reports to images at a very coarse level, without modeling fine-grained relationships between anatomical and pathological concepts outlined in reports and the corresponding semantic counterparts in images. To address this problem, we propose a Medical Dual-Stream Language-Image Pre-training (MeDSLIP) framework. Specifically, MeDSLIP establishes vision-language fine-grained alignments via disentangling visual and textual representations into anatomy-relevant and pathology-relevant streams. Moreover, a novel vision-language Prototypical Contr-astive Learning (ProtoCL) method is adopted in MeDSLIP to enhance the alignment within the anatomical and pathological streams. MeDSLIP further employs cross-stream Intra-image Contrastive Learning (ICL) to ensure the consistent coexistence of paired anatomical and pathological concepts within the same image. Such a cross-stream regularization encourages the model to exploit the synchrony between two streams for a more comprehensive representation learning. MeDSLIP is evaluated under zero-shot and supervised fine-tuning settings on three public datasets: NIH CXR14, RSNA Pneumonia, and SIIM-ACR Pneumothorax. Under these settings, MeDSLIP outperforms six leading CNN-based models on classification, grounding, and segmentation tasks.

  • 9 authors
·
Mar 15, 2024

VSSD: Vision Mamba with Non-Casual State Space Duality

Vision transformers have significantly advanced the field of computer vision, offering robust modeling capabilities and global receptive field. However, their high computational demands limit their applicability in processing long sequences. To tackle this issue, State Space Models (SSMs) have gained prominence in vision tasks as they offer linear computational complexity. Recently, State Space Duality (SSD), an improved variant of SSMs, was introduced in Mamba2 to enhance model performance and efficiency. However, the inherent causal nature of SSD/SSMs restricts their applications in non-causal vision tasks. To address this limitation, we introduce Visual State Space Duality (VSSD) model, which has a non-causal format of SSD. Specifically, we propose to discard the magnitude of interactions between the hidden state and tokens while preserving their relative weights, which relieves the dependencies of token contribution on previous tokens. Together with the involvement of multi-scan strategies, we show that the scanning results can be integrated to achieve non-causality, which not only improves the performance of SSD in vision tasks but also enhances its efficiency. We conduct extensive experiments on various benchmarks including image classification, detection, and segmentation, where VSSD surpasses existing state-of-the-art SSM-based models. Code and weights are available at https://github.com/YuHengsss/VSSD.

  • 4 authors
·
Jul 26, 2024 2

A foundation model with multi-variate parallel attention to generate neuronal activity

Learning from multi-variate time-series with heterogeneous channel configurations remains a fundamental challenge for deep neural networks (DNNs), particularly in clinical domains such as intracranial electroencephalography (iEEG), where channel setups vary widely across subjects. In this work, we introduce multi-variate parallel attention (MVPA), a novel self-attention mechanism that disentangles content, temporal, and spatial attention, enabling flexible, generalizable, and efficient modeling of time-series data with varying channel counts and configurations. We use MVPA to build MVPFormer, a generative foundation model for human electrophysiology, trained to predict the evolution of iEEG signals across diverse subjects. To support this and future effort by the community, we release the SWEC iEEG dataset, the largest publicly available iEEG dataset to date, comprising nearly 10,000 hours of recordings from heterogeneous clinical sources. MVPFormer leverages MVPA to achieve strong generalization across subjects, demonstrating expert-level performance in seizure detection and outperforming state-of-the-art Transformer baselines on our SWEC, the MAYO, and the FNUSA dataset. We further validate MVPA on standard time-series forecasting and classification tasks, where it matches or exceeds existing attention-based models. Together, our contributions establish MVPA as a general-purpose attention mechanism for heterogeneous time-series and MVPFormer as the first open-source, open-weights, and open-data iEEG foundation model with state-of-the-art clinical performance. The code is available at https://github.com/IBM/multi-variate-parallel-transformer. The SWEC iEEG dataset is available at https://mb-neuro.medical-blocks.ch/public_access/databases/ieeg/swec_ieeg.

  • 5 authors
·
Jun 25, 2025

FAIR1M: A Benchmark Dataset for Fine-grained Object Recognition in High-Resolution Remote Sensing Imagery

With the rapid development of deep learning, many deep learning-based approaches have made great achievements in object detection task. It is generally known that deep learning is a data-driven method. Data directly impact the performance of object detectors to some extent. Although existing datasets have included common objects in remote sensing images, they still have some limitations in terms of scale, categories, and images. Therefore, there is a strong requirement for establishing a large-scale benchmark on object detection in high-resolution remote sensing images. In this paper, we propose a novel benchmark dataset with more than 1 million instances and more than 15,000 images for Fine-grAined object recognItion in high-Resolution remote sensing imagery which is named as FAIR1M. All objects in the FAIR1M dataset are annotated with respect to 5 categories and 37 sub-categories by oriented bounding boxes. Compared with existing detection datasets dedicated to object detection, the FAIR1M dataset has 4 particular characteristics: (1) it is much larger than other existing object detection datasets both in terms of the quantity of instances and the quantity of images, (2) it provides more rich fine-grained category information for objects in remote sensing images, (3) it contains geographic information such as latitude, longitude and resolution, (4) it provides better image quality owing to a careful data cleaning procedure. To establish a baseline for fine-grained object recognition, we propose a novel evaluation method and benchmark fine-grained object detection tasks and a visual classification task using several State-Of-The-Art (SOTA) deep learning-based models on our FAIR1M dataset. Experimental results strongly indicate that the FAIR1M dataset is closer to practical application and it is considerably more challenging than existing datasets.

  • 14 authors
·
Mar 9, 2021

A Time Series Analysis-Based Stock Price Prediction Using Machine Learning and Deep Learning Models

Prediction of future movement of stock prices has always been a challenging task for the researchers. While the advocates of the efficient market hypothesis (EMH) believe that it is impossible to design any predictive framework that can accurately predict the movement of stock prices, there are seminal work in the literature that have clearly demonstrated that the seemingly random movement patterns in the time series of a stock price can be predicted with a high level of accuracy. Design of such predictive models requires choice of appropriate variables, right transformation methods of the variables, and tuning of the parameters of the models. In this work, we present a very robust and accurate framework of stock price prediction that consists of an agglomeration of statistical, machine learning and deep learning models. We use the daily stock price data, collected at five minutes interval of time, of a very well known company that is listed in the National Stock Exchange (NSE) of India. The granular data is aggregated into three slots in a day, and the aggregated data is used for building and training the forecasting models. We contend that the agglomerative approach of model building that uses a combination of statistical, machine learning, and deep learning approaches, can very effectively learn from the volatile and random movement patterns in a stock price data. We build eight classification and eight regression models based on statistical and machine learning approaches. In addition to these models, a deep learning regression model using a long-and-short-term memory (LSTM) network is also built. Extensive results have been presented on the performance of these models, and the results are critically analyzed.

  • 2 authors
·
Apr 17, 2020

RoMA: Scaling up Mamba-based Foundation Models for Remote Sensing

Recent advances in self-supervised learning for Vision Transformers (ViTs) have fueled breakthroughs in remote sensing (RS) foundation models. However, the quadratic complexity of self-attention poses a significant barrier to scalability, particularly for large models and high-resolution images. While the linear-complexity Mamba architecture offers a promising alternative, existing RS applications of Mamba remain limited to supervised tasks on small, domain-specific datasets. To address these challenges, we propose RoMA, a framework that enables scalable self-supervised pretraining of Mamba-based RS foundation models using large-scale, diverse, unlabeled data. RoMA enhances scalability for high-resolution images through a tailored auto-regressive learning strategy, incorporating two key innovations: 1) a rotation-aware pretraining mechanism combining adaptive cropping with angular embeddings to handle sparsely distributed objects with arbitrary orientations, and 2) multi-scale token prediction objectives that address the extreme variations in object scales inherent to RS imagery. Systematic empirical studies validate that Mamba adheres to RS data and parameter scaling laws, with performance scaling reliably as model and data size increase. Furthermore, experiments across scene classification, object detection, and semantic segmentation tasks demonstrate that RoMA-pretrained Mamba models consistently outperform ViT-based counterparts in both accuracy and computational efficiency. The source code and pretrained models will be released at https://github.com/MiliLab/RoMA.

  • 11 authors
·
Mar 13, 2025

Language Integration in Fine-Tuning Multimodal Large Language Models for Image-Based Regression

Multimodal Large Language Models (MLLMs) show promise for image-based regression tasks, but current approaches face key limitations. Recent methods fine-tune MLLMs using preset output vocabularies and generic task-level prompts (e.g., "How would you rate this image?"), assuming this mimics human rating behavior. Our analysis reveals that these approaches provide no benefit over image-only training. Models using preset vocabularies and generic prompts perform equivalently to image-only models, failing to leverage semantic understanding from textual input. We propose Regression via Transformer-Based Classification (RvTC), which replaces vocabulary-constrained classification with a flexible bin-based approach. Unlike approaches that address discretization errors through complex distributional modeling, RvTC eliminates manual vocabulary crafting through straightforward bin increase, achieving state-of-the-art performance on four image assessment datasets using only images. More importantly, we demonstrate that data-specific prompts dramatically improve performance. Unlike generic task descriptions, prompts containing semantic information about specific images enable MLLMs to leverage cross-modal understanding. On the AVA dataset, adding challenge titles to prompts substantially improves our already state-of-the-art image-only baseline. We demonstrate through empirical evidence from the AVA and AGIQA-3k datasets that MLLMs benefit from semantic prompt information, surpassing mere statistical biases. We validate RvTC across two different MLLM architectures, demonstrating consistent improvements and method generalizability.

  • 4 authors
·
Jul 20, 2025