Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeIDGI: A Framework to Eliminate Explanation Noise from Integrated Gradients
Integrated Gradients (IG) as well as its variants are well-known techniques for interpreting the decisions of deep neural networks. While IG-based approaches attain state-of-the-art performance, they often integrate noise into their explanation saliency maps, which reduce their interpretability. To minimize the noise, we examine the source of the noise analytically and propose a new approach to reduce the explanation noise based on our analytical findings. We propose the Important Direction Gradient Integration (IDGI) framework, which can be easily incorporated into any IG-based method that uses the Reimann Integration for integrated gradient computation. Extensive experiments with three IG-based methods show that IDGI improves them drastically on numerous interpretability metrics.
Understanding Gradient Regularization in Deep Learning: Efficient Finite-Difference Computation and Implicit Bias
Gradient regularization (GR) is a method that penalizes the gradient norm of the training loss during training. While some studies have reported that GR can improve generalization performance, little attention has been paid to it from the algorithmic perspective, that is, the algorithms of GR that efficiently improve the performance. In this study, we first reveal that a specific finite-difference computation, composed of both gradient ascent and descent steps, reduces the computational cost of GR. Next, we show that the finite-difference computation also works better in the sense of generalization performance. We theoretically analyze a solvable model, a diagonal linear network, and clarify that GR has a desirable implicit bias to so-called rich regime and finite-difference computation strengthens this bias. Furthermore, finite-difference GR is closely related to some other algorithms based on iterative ascent and descent steps for exploring flat minima. In particular, we reveal that the flooding method can perform finite-difference GR in an implicit way. Thus, this work broadens our understanding of GR for both practice and theory.
Inductive Gradient Adjustment For Spectral Bias In Implicit Neural Representations
Implicit Neural Representations (INRs), as a versatile representation paradigm, have achieved success in various computer vision tasks. Due to the spectral bias of the vanilla multi-layer perceptrons (MLPs), existing methods focus on designing MLPs with sophisticated architectures or repurposing training techniques for highly accurate INRs. In this paper, we delve into the linear dynamics model of MLPs and theoretically identify the empirical Neural Tangent Kernel (eNTK) matrix as a reliable link between spectral bias and training dynamics. Based on this insight, we propose a practical Inductive Gradient Adjustment (IGA) method, which could purposefully improve the spectral bias via inductive generalization of eNTK-based gradient transformation matrix. Theoretical and empirical analyses validate impacts of IGA on spectral bias. Further, we evaluate our method on different INRs tasks with various INR architectures and compare to existing training techniques. The superior and consistent improvements clearly validate the advantage of our IGA. Armed with our gradient adjustment method, better INRs with more enhanced texture details and sharpened edges can be learned from data by tailored impacts on spectral bias.
Guiding a Diffusion Transformer with the Internal Dynamics of Itself
The diffusion model presents a powerful ability to capture the entire (conditional) data distribution. However, due to the lack of sufficient training and data to learn to cover low-probability areas, the model will be penalized for failing to generate high-quality images corresponding to these areas. To achieve better generation quality, guidance strategies such as classifier free guidance (CFG) can guide the samples to the high-probability areas during the sampling stage. However, the standard CFG often leads to over-simplified or distorted samples. On the other hand, the alternative line of guiding diffusion model with its bad version is limited by carefully designed degradation strategies, extra training and additional sampling steps. In this paper, we proposed a simple yet effective strategy Internal Guidance (IG), which introduces an auxiliary supervision on the intermediate layer during training process and extrapolates the intermediate and deep layer's outputs to obtain generative results during sampling process. This simple strategy yields significant improvements in both training efficiency and generation quality on various baselines. On ImageNet 256x256, SiT-XL/2+IG achieves FID=5.31 and FID=1.75 at 80 and 800 epochs. More impressively, LightningDiT-XL/1+IG achieves FID=1.34 which achieves a large margin between all of these methods. Combined with CFG, LightningDiT-XL/1+IG achieves the current state-of-the-art FID of 1.19.
Understanding Hessian Alignment for Domain Generalization
Out-of-distribution (OOD) generalization is a critical ability for deep learning models in many real-world scenarios including healthcare and autonomous vehicles. Recently, different techniques have been proposed to improve OOD generalization. Among these methods, gradient-based regularizers have shown promising performance compared with other competitors. Despite this success, our understanding of the role of Hessian and gradient alignment in domain generalization is still limited. To address this shortcoming, we analyze the role of the classifier's head Hessian matrix and gradient in domain generalization using recent OOD theory of transferability. Theoretically, we show that spectral norm between the classifier's head Hessian matrices across domains is an upper bound of the transfer measure, a notion of distance between target and source domains. Furthermore, we analyze all the attributes that get aligned when we encourage similarity between Hessians and gradients. Our analysis explains the success of many regularizers like CORAL, IRM, V-REx, Fish, IGA, and Fishr as they regularize part of the classifier's head Hessian and/or gradient. Finally, we propose two simple yet effective methods to match the classifier's head Hessians and gradients in an efficient way, based on the Hessian Gradient Product (HGP) and Hutchinson's method (Hutchinson), and without directly calculating Hessians. We validate the OOD generalization ability of proposed methods in different scenarios, including transferability, severe correlation shift, label shift and diversity shift. Our results show that Hessian alignment methods achieve promising performance on various OOD benchmarks. The code is available at https://github.com/huawei-noah/Federated-Learning/tree/main/HessianAlignment.
Grids Often Outperform Implicit Neural Representations
Implicit Neural Representations (INRs) have recently shown impressive results, but their fundamental capacity, implicit biases, and scaling behavior remain poorly understood. We investigate the performance of diverse INRs across a suite of 2D and 3D real and synthetic signals with varying effective bandwidth, as well as both overfitting and generalization tasks including tomography, super-resolution, and denoising. By stratifying performance according to model size as well as signal type and bandwidth, our results shed light on how different INR and grid representations allocate their capacity. We find that, for most tasks and signals, a simple regularized grid with interpolation trains faster and to higher quality than any INR with the same number of parameters. We also find limited settings where INRs outperform grids -- namely fitting signals with underlying lower-dimensional structure such as shape contours -- to guide future use of INRs towards the most advantageous applications. Code and synthetic signals used in our analysis are available at https://github.com/voilalab/INR-benchmark.
Instruction-Guided Autoregressive Neural Network Parameter Generation
Learning to generate neural network parameters conditioned on task descriptions and architecture specifications is pivotal for advancing model adaptability and transfer learning. Existing methods especially those based on diffusion models suffer from limited scalability to large architectures, rigidity in handling varying network depths, and disjointed parameter generation that undermines inter-layer coherence. In this work, we propose IGPG (Instruction Guided Parameter Generation), an autoregressive framework that unifies parameter synthesis across diverse tasks and architectures. IGPG leverages a VQ-VAE and an autoregressive model to generate neural network parameters, conditioned on task instructions, dataset, and architecture details. By autoregressively generating neural network weights' tokens, IGPG ensures inter-layer coherence and enables efficient adaptation across models and datasets. Operating at the token level, IGPG effectively captures complex parameter distributions aggregated from a broad spectrum of pretrained models. Extensive experiments on multiple vision datasets demonstrate that IGPG consolidates diverse pretrained models into a single, flexible generative framework. The synthesized parameters achieve competitive or superior performance relative to state-of-the-art methods, especially in terms of scalability and efficiency when applied to large architectures. These results underscore ICPG potential as a powerful tool for pretrained weight retrieval, model selection, and rapid task-specific fine-tuning.
Inpainting-Guided Policy Optimization for Diffusion Large Language Models
Masked diffusion large language models (dLLMs) are emerging as promising alternatives to autoregressive LLMs, offering competitive performance while supporting unique generation capabilities such as inpainting. We explore how inpainting can inform RL algorithm design for dLLMs. Aligning LLMs with reinforcement learning faces an exploration challenge: sparse reward signals and sample waste when models fail to discover correct solutions. While this inefficiency affects LLMs broadly, dLLMs offer a distinctive opportunity--their inpainting ability can guide exploration. We introduce IGPO (Inpainting Guided Policy Optimization), an RL framework that strategically inserts partial ground-truth reasoning traces during online sampling. Unlike providing full solutions, inpainting steers exploration toward promising trajectory spaces while preserving self-generated reasoning, bridging supervised fine-tuning and reinforcement learning. We apply IGPO to group-based optimization methods such as GRPO, where exploration failures cause zero advantages and gradients. IGPO restores meaningful gradients while improving sample efficiency. We also propose supervised fine-tuning on synthetically rewritten concise traces that better align with dLLM generation patterns. With additional techniques including entropy-based filtering, our training recipe yields substantial gains across three mathematical benchmarks--GSM8K, Math500, and AMC--achieving new state-of-the-art results for full-attention masked dLLMs.
From Optimization Dynamics to Generalization Bounds via Łojasiewicz Gradient Inequality
Optimization and generalization are two essential aspects of statistical machine learning. In this paper, we propose a framework to connect optimization with generalization by analyzing the generalization error based on the optimization trajectory under the gradient flow algorithm. The key ingredient of this framework is the Uniform-LGI, a property that is generally satisfied when training machine learning models. Leveraging the Uniform-LGI, we first derive convergence rates for gradient flow algorithm, then we give generalization bounds for a large class of machine learning models. We further apply our framework to three distinct machine learning models: linear regression, kernel regression, and two-layer neural networks. Through our approach, we obtain generalization estimates that match or extend previous results.
On Invariance Penalties for Risk Minimization
The Invariant Risk Minimization (IRM) principle was first proposed by Arjovsky et al. [2019] to address the domain generalization problem by leveraging data heterogeneity from differing experimental conditions. Specifically, IRM seeks to find a data representation under which an optimal classifier remains invariant across all domains. Despite the conceptual appeal of IRM, the effectiveness of the originally proposed invariance penalty has recently been brought into question. In particular, there exists counterexamples for which that invariance penalty can be arbitrarily small for non-invariant data representations. We propose an alternative invariance penalty by revisiting the Gramian matrix of the data representation. We discuss the role of its eigenvalues in the relationship between the risk and the invariance penalty, and demonstrate that it is ill-conditioned for said counterexamples. The proposed approach is guaranteed to recover an invariant representation for linear settings under mild non-degeneracy conditions. Its effectiveness is substantiated by experiments on DomainBed and InvarianceUnitTest, two extensive test beds for domain generalization.
I-INR: Iterative Implicit Neural Representations
Implicit Neural Representations (INRs) have revolutionized signal processing and computer vision by modeling signals as continuous, differentiable functions parameterized by neural networks. However, their inherent formulation as a regression problem makes them prone to regression to the mean, limiting their ability to capture fine details, retain high-frequency information, and handle noise effectively. To address these challenges, we propose Iterative Implicit Neural Representations (I-INRs) a novel plug-and-play framework that enhances signal reconstruction through an iterative refinement process. I-INRs effectively recover high-frequency details, improve robustness to noise, and achieve superior reconstruction quality. Our framework seamlessly integrates with existing INR architectures, delivering substantial performance gains across various tasks. Extensive experiments show that I-INRs outperform baseline methods, including WIRE, SIREN, and Gauss, in diverse computer vision applications such as image restoration, image denoising, and object occupancy prediction.
Comparison between Supervised and Unsupervised Learning in Deep Unfolded Sparse Signal Recovery
This paper investigates the impact of loss function selection in deep unfolding techniques for sparse signal recovery algorithms. Deep unfolding transforms iterative optimization algorithms into trainable lightweight neural networks by unfolding their iterations as network layers, with various loss functions employed for parameter learning depending on application contexts. We focus on deep unfolded versions of the fundamental iterative shrinkage thresholding algorithm (ISTA) and the iterative hard thresholding algorithm (IHT), comparing supervised learning using mean squared error with unsupervised learning using the objective function of the original optimization problem. Our simulation results reveal that the effect of the choice of loss function significantly depends on the convexity of the optimization problem. For convex ell_1-regularized problems, supervised-ISTA achieves better final recovery accuracy but fails to minimize the original objective function, whereas we empirically observe that unsupervised-ISTA converges to a nearly identical solution as conventional ISTA but with accelerated convergence. Conversely, for nonconvex ell_0-regularized problems, both supervised-IHT and unsupervised-IHT converge to better local minima than the original IHT, showing similar performance regardless of the loss function employed. These findings provide valuable insights into the design of effective deep unfolded networks for sparse signal recovery applications.
Visualizing Deep Networks by Optimizing with Integrated Gradients
Understanding and interpreting the decisions made by deep learning models is valuable in many domains. In computer vision, computing heatmaps from a deep network is a popular approach for visualizing and understanding deep networks. However, heatmaps that do not correlate with the network may mislead human, hence the performance of heatmaps in providing a faithful explanation to the underlying deep network is crucial. In this paper, we propose I-GOS, which optimizes for a heatmap so that the classification scores on the masked image would maximally decrease. The main novelty of the approach is to compute descent directions based on the integrated gradients instead of the normal gradient, which avoids local optima and speeds up convergence. Compared with previous approaches, our method can flexibly compute heatmaps at any resolution for different user needs. Extensive experiments on several benchmark datasets show that the heatmaps produced by our approach are more correlated with the decision of the underlying deep network, in comparison with other state-of-the-art approaches.
Iterative Graph Alignment
By compressing diverse narratives, LLMs go beyond memorization, achieving intelligence by capturing generalizable causal relationships. However, they suffer from local 'representation gaps' due to insufficient training data diversity, limiting their real-world utility, especially in tasks requiring strict alignment to rules. Traditional alignment methods relying on heavy human annotations are inefficient and unscalable. Recent self-alignment techniques also fall short, as they often depend on self-selection based prompting and memorization-based learning. To address these issues, we introduce Iterative Graph Alignment (IGA), an annotation-free rule-based alignment algorithm. A teacher model (VLM) employs Iterative Graph Prompting (IGP) to create logical graphs and reference answers. The student model (LLM) identifies local knowledge gaps by attempting to align its responses with these references, collaborating with helper models to generate diverse answers. These aligned responses are then used for iterative supervised fine-tuning (SFT). Our evaluations across five rule-based scenarios demonstrate IGP's effectiveness, with a 73.12\% alignment improvement in Claude Sonnet 3.5, and Llama3-8B-Instruct achieving an 86.20\% improvement, outperforming Claude Sonnet 3.5 in rule-based alignment.
It Takes a Good Model to Train a Good Model: Generalized Gaussian Priors for Optimized LLMs
Despite rapid advancements in the research and deployment of large language models (LLMs), the statistical distribution of model parameters, as well as their influence on initialization, training dynamics, and downstream efficiency, has received surprisingly little attention. A recent work introduced BackSlash, a training-time compression algorithm. It first demonstrated that pre-trained LLM parameters follow generalized Gaussian distributions (GGDs) better. By optimizing GG priors during training, BackSlash can reduce parameters by up to 90\% with minimal performance loss. Building on this foundational insight, we propose a unified, end-to-end framework for LLM optimization based on the GG model. Our contributions are threefold: (1) GG-based initialization scheme that aligns with the statistical structure of trained models, resulting in faster convergence and improved accuracy; (2) DeepShape, a post-training regularization method that reshapes weight distributions to match a GG profile, improving compressibility with minimized degradation in performance; and (3) RF8, a compact and hardware-efficient 8-bit floating-point format designed for GG-distributed-initialized BackSlash training, enabling low-cost inference without compromising accuracy. Experiments across diverse model architectures show that our framework consistently yields smaller and faster models that match or outperform standard training baselines. By grounding LLM development in principled statistical modeling, this work forges a new path toward efficient, scalable, and hardware-aware AI systems. The code is available on our project page: https://huggingface.co/spaces/shifeng3711/gg_prior.
OReX: Object Reconstruction from Planar Cross-sections Using Neural Fields
Reconstructing 3D shapes from planar cross-sections is a challenge inspired by downstream applications like medical imaging and geographic informatics. The input is an in/out indicator function fully defined on a sparse collection of planes in space, and the output is an interpolation of the indicator function to the entire volume. Previous works addressing this sparse and ill-posed problem either produce low quality results, or rely on additional priors such as target topology, appearance information, or input normal directions. In this paper, we present OReX, a method for 3D shape reconstruction from slices alone, featuring a Neural Field as the interpolation prior. A modest neural network is trained on the input planes to return an inside/outside estimate for a given 3D coordinate, yielding a powerful prior that induces smoothness and self-similarities. The main challenge for this approach is high-frequency details, as the neural prior is overly smoothing. To alleviate this, we offer an iterative estimation architecture and a hierarchical input sampling scheme that encourage coarse-to-fine training, allowing the training process to focus on high frequencies at later stages. In addition, we identify and analyze a ripple-like effect stemming from the mesh extraction step. We mitigate it by regularizing the spatial gradients of the indicator function around input in/out boundaries during network training, tackling the problem at the root. Through extensive qualitative and quantitative experimentation, we demonstrate our method is robust, accurate, and scales well with the size of the input. We report state-of-the-art results compared to previous approaches and recent potential solutions, and demonstrate the benefit of our individual contributions through analysis and ablation studies.
Eliminating Oversaturation and Artifacts of High Guidance Scales in Diffusion Models
Classifier-free guidance (CFG) is crucial for improving both generation quality and alignment between the input condition and final output in diffusion models. While a high guidance scale is generally required to enhance these aspects, it also causes oversaturation and unrealistic artifacts. In this paper, we revisit the CFG update rule and introduce modifications to address this issue. We first decompose the update term in CFG into parallel and orthogonal components with respect to the conditional model prediction and observe that the parallel component primarily causes oversaturation, while the orthogonal component enhances image quality. Accordingly, we propose down-weighting the parallel component to achieve high-quality generations without oversaturation. Additionally, we draw a connection between CFG and gradient ascent and introduce a new rescaling and momentum method for the CFG update rule based on this insight. Our approach, termed adaptive projected guidance (APG), retains the quality-boosting advantages of CFG while enabling the use of higher guidance scales without oversaturation. APG is easy to implement and introduces practically no additional computational overhead to the sampling process. Through extensive experiments, we demonstrate that APG is compatible with various conditional diffusion models and samplers, leading to improved FID, recall, and saturation scores while maintaining precision comparable to CFG, making our method a superior plug-and-play alternative to standard classifier-free guidance.
Time series saliency maps: explaining models across multiple domains
Traditional saliency map methods, popularized in computer vision, highlight individual points (pixels) of the input that contribute the most to the model's output. However, in time-series they offer limited insights as semantically meaningful features are often found in other domains. We introduce Cross-domain Integrated Gradients, a generalization of Integrated Gradients. Our method enables feature attributions on any domain that can be formulated as an invertible, differentiable transformation of the time domain. Crucially, our derivation extends the original Integrated Gradients into the complex domain, enabling frequency-based attributions. We provide the necessary theoretical guarantees, namely, path independence and completeness. Our approach reveals interpretable, problem-specific attributions that time-domain methods cannot capture, on three real-world tasks: wearable sensor heart rate extraction, electroencephalography-based seizure detection, and zero-shot time-series forecasting. We release an open-source Tensorflow/PyTorch library to enable plug-and-play cross-domain explainability for time-series models. These results demonstrate the ability of cross-domain integrated gradients to provide semantically meaningful insights in time-series models that are impossible with traditional time-domain saliency.
Optimizing Millions of Hyperparameters by Implicit Differentiation
We propose an algorithm for inexpensive gradient-based hyperparameter optimization that combines the implicit function theorem (IFT) with efficient inverse Hessian approximations. We present results about the relationship between the IFT and differentiating through optimization, motivating our algorithm. We use the proposed approach to train modern network architectures with millions of weights and millions of hyper-parameters. For example, we learn a data-augmentation network - where every weight is a hyperparameter tuned for validation performance - outputting augmented training examples. Jointly tuning weights and hyperparameters with our approach is only a few times more costly in memory and compute than standard training.
Demystifying Catastrophic Forgetting in Two-Stage Incremental Object Detector
Catastrophic forgetting is a critical chanllenge for incremental object detection (IOD). Most existing methods treat the detector monolithically, relying on instance replay or knowledge distillation without analyzing component-specific forgetting. Through dissection of Faster R-CNN, we reveal a key insight: Catastrophic forgetting is predominantly localized to the RoI Head classifier, while regressors retain robustness across incremental stages. This finding challenges conventional assumptions, motivating us to develop a framework termed NSGP-RePRE. Regional Prototype Replay (RePRE) mitigates classifier forgetting via replay of two types of prototypes: coarse prototypes represent class-wise semantic centers of RoI features, while fine-grained prototypes model intra-class variations. Null Space Gradient Projection (NSGP) is further introduced to eliminate prototype-feature misalignment by updating the feature extractor in directions orthogonal to subspace of old inputs via gradient projection, aligning RePRE with incremental learning dynamics. Our simple yet effective design allows NSGP-RePRE to achieve state-of-the-art performance on the Pascal VOC and MS COCO datasets under various settings. Our work not only advances IOD methodology but also provide pivotal insights for catastrophic forgetting mitigation in IOD. Code is available at https://github.com/fanrena/NSGP-RePRE{https://github.com/fanrena/NSGP-RePRE} .
Accelerate TarFlow Sampling with GS-Jacobi Iteration
Image generation models have achieved widespread applications. As an instance, the TarFlow model combines the transformer architecture with Normalizing Flow models, achieving state-of-the-art results on multiple benchmarks. However, due to the causal form of attention requiring sequential computation, TarFlow's sampling process is extremely slow. In this paper, we demonstrate that through a series of optimization strategies, TarFlow sampling can be greatly accelerated by using the Gauss-Seidel-Jacobi (abbreviated as GS-Jacobi) iteration method. Specifically, we find that blocks in the TarFlow model have varying importance: a small number of blocks play a major role in image generation tasks, while other blocks contribute relatively little; some blocks are sensitive to initial values and prone to numerical overflow, while others are relatively robust. Based on these two characteristics, we propose the Convergence Ranking Metric (CRM) and the Initial Guessing Metric (IGM): CRM is used to identify whether a TarFlow block is "simple" (converges in few iterations) or "tough" (requires more iterations); IGM is used to evaluate whether the initial value of the iteration is good. Experiments on four TarFlow models demonstrate that GS-Jacobi sampling can significantly enhance sampling efficiency while maintaining the quality of generated images (measured by FID), achieving speed-ups of 4.53x in Img128cond, 5.32x in AFHQ, 2.96x in Img64uncond, and 2.51x in Img64cond without degrading FID scores or sample quality. Code and checkpoints are accessible on https://github.com/encoreus/GS-Jacobi_for_TarFlow
IGL-Bench: Establishing the Comprehensive Benchmark for Imbalanced Graph Learning
Deep graph learning has gained grand popularity over the past years due to its versatility and success in representing graph data across a wide range of domains. However, the pervasive issue of imbalanced graph data distributions, where certain parts exhibit disproportionally abundant data while others remain sparse, undermines the efficacy of conventional graph learning algorithms, leading to biased outcomes. To address this challenge, Imbalanced Graph Learning (IGL) has garnered substantial attention, enabling more balanced data distributions and better task performance. Despite the proliferation of IGL algorithms, the absence of consistent experimental protocols and fair performance comparisons pose a significant barrier to comprehending advancements in this field. To bridge this gap, we introduce IGL-Bench, a foundational comprehensive benchmark for imbalanced graph learning, embarking on 16 diverse graph datasets and 24 distinct IGL algorithms with uniform data processing and splitting strategies. Specifically, IGL-Bench systematically investigates state-of-the-art IGL algorithms in terms of effectiveness, robustness, and efficiency on node-level and graph-level tasks, with the scope of class-imbalance and topology-imbalance. Extensive experiments demonstrate the potential benefits of IGL algorithms on various imbalanced conditions, offering insights and opportunities in the IGL field. Further, we have developed an open-sourced and unified package to facilitate reproducible evaluation and inspire further innovative research, which is available at https://github.com/RingBDStack/IGL-Bench.
A Fast Incremental Gaussian Mixture Model
This work builds upon previous efforts in online incremental learning, namely the Incremental Gaussian Mixture Network (IGMN). The IGMN is capable of learning from data streams in a single-pass by improving its model after analyzing each data point and discarding it thereafter. Nevertheless, it suffers from the scalability point-of-view, due to its asymptotic time complexity of Obigl(NKD^3bigr) for N data points, K Gaussian components and D dimensions, rendering it inadequate for high-dimensional data. In this paper, we manage to reduce this complexity to Obigl(NKD^2bigr) by deriving formulas for working directly with precision matrices instead of covariance matrices. The final result is a much faster and scalable algorithm which can be applied to high dimensional tasks. This is confirmed by applying the modified algorithm to high-dimensional classification datasets.
No Training, No Problem: Rethinking Classifier-Free Guidance for Diffusion Models
Classifier-free guidance (CFG) has become the standard method for enhancing the quality of conditional diffusion models. However, employing CFG requires either training an unconditional model alongside the main diffusion model or modifying the training procedure by periodically inserting a null condition. There is also no clear extension of CFG to unconditional models. In this paper, we revisit the core principles of CFG and introduce a new method, independent condition guidance (ICG), which provides the benefits of CFG without the need for any special training procedures. Our approach streamlines the training process of conditional diffusion models and can also be applied during inference on any pre-trained conditional model. Additionally, by leveraging the time-step information encoded in all diffusion networks, we propose an extension of CFG, called time-step guidance (TSG), which can be applied to any diffusion model, including unconditional ones. Our guidance techniques are easy to implement and have the same sampling cost as CFG. Through extensive experiments, we demonstrate that ICG matches the performance of standard CFG across various conditional diffusion models. Moreover, we show that TSG improves generation quality in a manner similar to CFG, without relying on any conditional information.
Learning Globally Smooth Functions on Manifolds
Smoothness and low dimensional structures play central roles in improving generalization and stability in learning and statistics. This work combines techniques from semi-infinite constrained learning and manifold regularization to learn representations that are globally smooth on a manifold. To do so, it shows that under typical conditions the problem of learning a Lipschitz continuous function on a manifold is equivalent to a dynamically weighted manifold regularization problem. This observation leads to a practical algorithm based on a weighted Laplacian penalty whose weights are adapted using stochastic gradient techniques. It is shown that under mild conditions, this method estimates the Lipschitz constant of the solution, learning a globally smooth solution as a byproduct. Experiments on real world data illustrate the advantages of the proposed method relative to existing alternatives.
Image Understanding Makes for A Good Tokenizer for Image Generation
Abstract Modern image generation (IG) models have been shown to capture rich semantics valuable for image understanding (IU) tasks. However, the potential of IU models to improve IG performance remains uncharted. We address this issue using a token-based IG framework, which relies on effective tokenizers to project images into token sequences. Currently, pixel reconstruction (e.g., VQGAN) dominates the training objective for image tokenizers. In contrast, our approach adopts the feature reconstruction objective, where tokenizers are trained by distilling knowledge from pretrained IU encoders. Comprehensive comparisons indicate that tokenizers with strong IU capabilities achieve superior IG performance across a variety of metrics, datasets, tasks, and proposal networks. Notably, VQ-KD CLIP achieves 4.10 FID on ImageNet-1k (IN-1k). Visualization suggests that the superiority of VQ-KD can be partly attributed to the rich semantics within the VQ-KD codebook. We further introduce a straightforward pipeline to directly transform IU encoders into tokenizers, demonstrating exceptional effectiveness for IG tasks. These discoveries may energize further exploration into image tokenizer research and inspire the community to reassess the relationship between IU and IG. The code is released at https://github.com/magic-research/vector_quantization.
Jacobian Descent for Multi-Objective Optimization
Many optimization problems are inherently multi-objective. To address them, we formalize Jacobian descent (JD), a direct generalization of gradient descent for vector-valued functions. Each step of this algorithm relies on a Jacobian matrix consisting of one gradient per objective. The aggregator, responsible for reducing this matrix into an update vector, characterizes JD. While the multi-task learning literature already contains a variety of aggregators, they often lack some natural properties. In particular, the update should not conflict with any objective and should scale proportionally to the norm of each gradient. We propose a new aggregator specifically designed to satisfy this. Emphasizing conflict between objectives, we then highlight direct applications for our methods. Most notably, we introduce instance-wise risk minimization (IWRM), a learning paradigm in which the loss of each training example is considered a separate objective. On simple image classification tasks, IWRM exhibits promising results compared to the direct minimization of the average loss. The performance of our aggregator in those experiments also corroborates our theoretical findings. Lastly, as speed is the main limitation of JD, we provide a path towards a more efficient implementation.
Cauchy-Schwarz Regularizers
We introduce a novel class of regularization functions, called Cauchy-Schwarz (CS) regularizers, which can be designed to induce a wide range of properties in solution vectors of optimization problems. To demonstrate the versatility of CS regularizers, we derive regularization functions that promote discrete-valued vectors, eigenvectors of a given matrix, and orthogonal matrices. The resulting CS regularizers are simple, differentiable, and can be free of spurious stationary points, making them suitable for gradient-based solvers and large-scale optimization problems. In addition, CS regularizers automatically adapt to the appropriate scale, which is, for example, beneficial when discretizing the weights of neural networks. To demonstrate the efficacy of CS regularizers, we provide results for solving underdetermined systems of linear equations and weight quantization in neural networks. Furthermore, we discuss specializations, variations, and generalizations, which lead to an even broader class of new and possibly more powerful regularizers.
Interleaved Gibbs Diffusion for Constrained Generation
We introduce Interleaved Gibbs Diffusion (IGD), a novel generative modeling framework for mixed continuous-discrete data, focusing on constrained generation problems. Prior works on discrete and continuous-discrete diffusion models assume factorized denoising distribution for fast generation, which can hinder the modeling of strong dependencies between random variables encountered in constrained generation. IGD moves beyond this by interleaving continuous and discrete denoising algorithms via a discrete time Gibbs sampling type Markov chain. IGD provides flexibility in the choice of denoisers, allows conditional generation via state-space doubling and inference time scaling via the ReDeNoise method. Empirical evaluations on three challenging tasks-solving 3-SAT, generating molecule structures, and generating layouts-demonstrate state-of-the-art performance. Notably, IGD achieves a 7% improvement on 3-SAT out of the box and achieves state-of-the-art results in molecule generation without relying on equivariant diffusion or domain-specific architectures. We explore a wide range of modeling, and interleaving strategies along with hyperparameters in each of these problems.
Learning Preconditioner for Conjugate Gradient PDE Solvers
Efficient numerical solvers for partial differential equations empower science and engineering. One of the commonly employed numerical solvers is the preconditioned conjugate gradient (PCG) algorithm which can solve large systems to a given precision level. One challenge in PCG solvers is the selection of preconditioners, as different problem-dependent systems can benefit from different preconditioners. We present a new method to introduce inductive bias in preconditioning conjugate gradient algorithm. Given a system matrix and a set of solution vectors arise from an underlying distribution, we train a graph neural network to obtain an approximate decomposition to the system matrix to be used as a preconditioner in the context of PCG solvers. We conduct extensive experiments to demonstrate the efficacy and generalizability of our proposed approach in solving various 2D and 3D linear second-order PDEs.
Adaptive Guidance: Training-free Acceleration of Conditional Diffusion Models
This paper presents a comprehensive study on the role of Classifier-Free Guidance (CFG) in text-conditioned diffusion models from the perspective of inference efficiency. In particular, we relax the default choice of applying CFG in all diffusion steps and instead search for efficient guidance policies. We formulate the discovery of such policies in the differentiable Neural Architecture Search framework. Our findings suggest that the denoising steps proposed by CFG become increasingly aligned with simple conditional steps, which renders the extra neural network evaluation of CFG redundant, especially in the second half of the denoising process. Building upon this insight, we propose "Adaptive Guidance" (AG), an efficient variant of CFG, that adaptively omits network evaluations when the denoising process displays convergence. Our experiments demonstrate that AG preserves CFG's image quality while reducing computation by 25%. Thus, AG constitutes a plug-and-play alternative to Guidance Distillation, achieving 50% of the speed-ups of the latter while being training-free and retaining the capacity to handle negative prompts. Finally, we uncover further redundancies of CFG in the first half of the diffusion process, showing that entire neural function evaluations can be replaced by simple affine transformations of past score estimates. This method, termed LinearAG, offers even cheaper inference at the cost of deviating from the baseline model. Our findings provide insights into the efficiency of the conditional denoising process that contribute to more practical and swift deployment of text-conditioned diffusion models.
SHACIRA: Scalable HAsh-grid Compression for Implicit Neural Representations
Implicit Neural Representations (INR) or neural fields have emerged as a popular framework to encode multimedia signals such as images and radiance fields while retaining high-quality. Recently, learnable feature grids proposed by Instant-NGP have allowed significant speed-up in the training as well as the sampling of INRs by replacing a large neural network with a multi-resolution look-up table of feature vectors and a much smaller neural network. However, these feature grids come at the expense of large memory consumption which can be a bottleneck for storage and streaming applications. In this work, we propose SHACIRA, a simple yet effective task-agnostic framework for compressing such feature grids with no additional post-hoc pruning/quantization stages. We reparameterize feature grids with quantized latent weights and apply entropy regularization in the latent space to achieve high levels of compression across various domains. Quantitative and qualitative results on diverse datasets consisting of images, videos, and radiance fields, show that our approach outperforms existing INR approaches without the need for any large datasets or domain-specific heuristics. Our project page is available at http://shacira.github.io .
Adaptive Estimation of Graphical Models under Total Positivity
We consider the problem of estimating (diagonally dominant) M-matrices as precision matrices in Gaussian graphical models. These models exhibit intriguing properties, such as the existence of the maximum likelihood estimator with merely two observations for M-matrices lauritzen2019maximum,slawski2015estimation and even one observation for diagonally dominant M-matrices truell2021maximum. We propose an adaptive multiple-stage estimation method that refines the estimate by solving a weighted ell_1-regularized problem at each stage. Furthermore, we develop a unified framework based on the gradient projection method to solve the regularized problem, incorporating distinct projections to handle the constraints of M-matrices and diagonally dominant M-matrices. A theoretical analysis of the estimation error is provided. Our method outperforms state-of-the-art methods in precision matrix estimation and graph edge identification, as evidenced by synthetic and financial time-series data sets.
Segmentation-guided Layer-wise Image Vectorization with Gradient Fills
The widespread use of vector graphics creates a significant demand for vectorization methods. While recent learning-based techniques have shown their capability to create vector images of clear topology, filling these primitives with gradients remains a challenge. In this paper, we propose a segmentation-guided vectorization framework to convert raster images into concise vector graphics with radial gradient fills. With the guidance of an embedded gradient-aware segmentation subroutine, our approach progressively appends gradient-filled B\'ezier paths to the output, where primitive parameters are initiated with our newly designed initialization technique and are optimized to minimize our novel loss function. We build our method on a differentiable renderer with traditional segmentation algorithms to develop it as a model-free tool for raster-to-vector conversion. It is tested on various inputs to demonstrate its feasibility, independent of datasets, to synthesize vector graphics with improved visual quality and layer-wise topology compared to prior work.
CFG++: Manifold-constrained Classifier Free Guidance for Diffusion Models
Classifier-free guidance (CFG) is a fundamental tool in modern diffusion models for text-guided generation. Although effective, CFG has notable drawbacks. For instance, DDIM with CFG lacks invertibility, complicating image editing; furthermore, high guidance scales, essential for high-quality outputs, frequently result in issues like mode collapse. Contrary to the widespread belief that these are inherent limitations of diffusion models, this paper reveals that the problems actually stem from the off-manifold phenomenon associated with CFG, rather than the diffusion models themselves. More specifically, inspired by the recent advancements of diffusion model-based inverse problem solvers (DIS), we reformulate text-guidance as an inverse problem with a text-conditioned score matching loss, and develop CFG++, a novel approach that tackles the off-manifold challenges inherent in traditional CFG. CFG++ features a surprisingly simple fix to CFG, yet it offers significant improvements, including better sample quality for text-to-image generation, invertibility, smaller guidance scales, reduced mode collapse, etc. Furthermore, CFG++ enables seamless interpolation between unconditional and conditional sampling at lower guidance scales, consistently outperforming traditional CFG at all scales. Experimental results confirm that our method significantly enhances performance in text-to-image generation, DDIM inversion, editing, and solving inverse problems, suggesting a wide-ranging impact and potential applications in various fields that utilize text guidance. Project Page: https://cfgpp-diffusion.github.io/.
Domain Generalization via Rationale Invariance
This paper offers a new perspective to ease the challenge of domain generalization, which involves maintaining robust results even in unseen environments. Our design focuses on the decision-making process in the final classifier layer. Specifically, we propose treating the element-wise contributions to the final results as the rationale for making a decision and representing the rationale for each sample as a matrix. For a well-generalized model, we suggest the rationale matrices for samples belonging to the same category should be similar, indicating the model relies on domain-invariant clues to make decisions, thereby ensuring robust results. To implement this idea, we introduce a rationale invariance loss as a simple regularization technique, requiring only a few lines of code. Our experiments demonstrate that the proposed approach achieves competitive results across various datasets, despite its simplicity. Code is available at https://github.com/liangchen527/RIDG.
Hyperparameter optimization with approximate gradient
Most models in machine learning contain at least one hyperparameter to control for model complexity. Choosing an appropriate set of hyperparameters is both crucial in terms of model accuracy and computationally challenging. In this work we propose an algorithm for the optimization of continuous hyperparameters using inexact gradient information. An advantage of this method is that hyperparameters can be updated before model parameters have fully converged. We also give sufficient conditions for the global convergence of this method, based on regularity conditions of the involved functions and summability of errors. Finally, we validate the empirical performance of this method on the estimation of regularization constants of L2-regularized logistic regression and kernel Ridge regression. Empirical benchmarks indicate that our approach is highly competitive with respect to state of the art methods.
GD doesn't make the cut: Three ways that non-differentiability affects neural network training
This paper investigates the distinctions between gradient methods applied to non-differentiable functions (NGDMs) and classical gradient descents (GDs) designed for differentiable functions. First, we demonstrate significant differences in the convergence properties of NGDMs compared to GDs, challenging the applicability of the extensive neural network convergence literature based on L-smoothness to non-smooth neural networks. Next, we demonstrate the paradoxical nature of NGDM solutions for L_{1}-regularized problems, showing that increasing the regularization penalty leads to an increase in the L_{1} norm of optimal solutions in NGDMs. Consequently, we show that widely adopted L_{1} penalization-based techniques for network pruning do not yield expected results. Finally, we explore the Edge of Stability phenomenon, indicating its inapplicability even to Lipschitz continuous convex differentiable functions, leaving its relevance to non-convex non-differentiable neural networks inconclusive. Our analysis exposes misguided interpretations of NGDMs in widely referenced papers and texts due to an overreliance on strong smoothness assumptions, emphasizing the necessity for a nuanced understanding of foundational assumptions in the analysis of these systems.
IGLU: Efficient GCN Training via Lazy Updates
Training multi-layer Graph Convolution Networks (GCN) using standard SGD techniques scales poorly as each descent step ends up updating node embeddings for a large portion of the graph. Recent attempts to remedy this sub-sample the graph that reduces compute but introduce additional variance and may offer suboptimal performance. This paper develops the IGLU method that caches intermediate computations at various GCN layers thus enabling lazy updates that significantly reduce the compute cost of descent. IGLU introduces bounded bias into the gradients but nevertheless converges to a first-order saddle point under standard assumptions such as objective smoothness. Benchmark experiments show that IGLU offers up to 1.2% better accuracy despite requiring up to 88% less compute.
Implicit Regularization for Tubal Tensor Factorizations via Gradient Descent
We provide a rigorous analysis of implicit regularization in an overparametrized tensor factorization problem beyond the lazy training regime. For matrix factorization problems, this phenomenon has been studied in a number of works. A particular challenge has been to design universal initialization strategies which provably lead to implicit regularization in gradient-descent methods. At the same time, it has been argued by Cohen et. al. 2016 that more general classes of neural networks can be captured by considering tensor factorizations. However, in the tensor case, implicit regularization has only been rigorously established for gradient flow or in the lazy training regime. In this paper, we prove the first tensor result of its kind for gradient descent rather than gradient flow. We focus on the tubal tensor product and the associated notion of low tubal rank, encouraged by the relevance of this model for image data. We establish that gradient descent in an overparametrized tensor factorization model with a small random initialization exhibits an implicit bias towards solutions of low tubal rank. Our theoretical findings are illustrated in an extensive set of numerical simulations show-casing the dynamics predicted by our theory as well as the crucial role of using a small random initialization.
Learning Continually by Spectral Regularization
Loss of plasticity is a phenomenon where neural networks become more difficult to train during the course of learning. Continual learning algorithms seek to mitigate this effect by sustaining good predictive performance while maintaining network trainability. We develop new techniques for improving continual learning by first reconsidering how initialization can ensure trainability during early phases of learning. From this perspective, we derive new regularization strategies for continual learning that ensure beneficial initialization properties are better maintained throughout training. In particular, we investigate two new regularization techniques for continual learning: (i) Wasserstein regularization toward the initial weight distribution, which is less restrictive than regularizing toward initial weights; and (ii) regularizing weight matrix singular values, which directly ensures gradient diversity is maintained throughout training. We present an experimental analysis that shows these alternative regularizers can improve continual learning performance across a range of supervised learning tasks and model architectures. The alternative regularizers prove to be less sensitive to hyperparameters while demonstrating better training in individual tasks, sustaining trainability as new tasks arrive, and achieving better generalization performance.
Learning Hyperparameters via a Data-Emphasized Variational Objective
When training large flexible models, practitioners often rely on grid search to select hyperparameters that control over-fitting. This grid search has several disadvantages: the search is computationally expensive, requires carving out a validation set that reduces the available data for training, and requires users to specify candidate values. In this paper, we propose an alternative: directly learning regularization hyperparameters on the full training set via the evidence lower bound ("ELBo") objective from variational methods. For deep neural networks with millions of parameters, we recommend a modified ELBo that upweights the influence of the data likelihood relative to the prior. Our proposed technique overcomes all three disadvantages of grid search. In a case study on transfer learning of image classifiers, we show how our method reduces the 88+ hour grid search of past work to under 3 hours while delivering comparable accuracy. We further demonstrate how our approach enables efficient yet accurate approximations of Gaussian processes with learnable length-scale kernels.
Score-based Idempotent Distillation of Diffusion Models
Idempotent generative networks (IGNs) are a new line of generative models based on idempotent mapping to a target manifold. IGNs support both single-and multi-step generation, allowing for a flexible trade-off between computational cost and sample quality. But similar to Generative Adversarial Networks (GANs), conventional IGNs require adversarial training and are prone to training instabilities and mode collapse. Diffusion and score-based models are popular approaches to generative modeling that iteratively transport samples from one distribution, usually a Gaussian, to a target data distribution. These models have gained popularity due to their stable training dynamics and high-fidelity generation quality. However, this stability and quality come at the cost of high computational cost, as the data must be transported incrementally along the entire trajectory. New sampling methods, model distillation, and consistency models have been developed to reduce the sampling cost and even perform one-shot sampling from diffusion models. In this work, we unite diffusion and IGNs by distilling idempotent models from diffusion model scores, called SIGN. Our proposed method is highly stable and does not require adversarial losses. We provide a theoretical analysis of our proposed score-based training methods and empirically show that IGNs can be effectively distilled from a pre-trained diffusion model, enabling faster inference than iterative score-based models. SIGNs can perform multi-step sampling, allowing users to trade off quality for efficiency. These models operate directly on the source domain; they can project corrupted or alternate distributions back onto the target manifold, enabling zero-shot editing of inputs. We validate our models on multiple image datasets, achieving state-of-the-art results for idempotent models on the CIFAR and CelebA datasets.
Igeood: An Information Geometry Approach to Out-of-Distribution Detection
Reliable out-of-distribution (OOD) detection is fundamental to implementing safer modern machine learning (ML) systems. In this paper, we introduce Igeood, an effective method for detecting OOD samples. Igeood applies to any pre-trained neural network, works under various degrees of access to the ML model, does not require OOD samples or assumptions on the OOD data but can also benefit (if available) from OOD samples. By building on the geodesic (Fisher-Rao) distance between the underlying data distributions, our discriminator can combine confidence scores from the logits outputs and the learned features of a deep neural network. Empirically, we show that Igeood outperforms competing state-of-the-art methods on a variety of network architectures and datasets.
Classifier-Free Guidance is a Predictor-Corrector
We investigate the theoretical foundations of classifier-free guidance (CFG). CFG is the dominant method of conditional sampling for text-to-image diffusion models, yet unlike other aspects of diffusion, it remains on shaky theoretical footing. In this paper, we disprove common misconceptions, by showing that CFG interacts differently with DDPM (Ho et al., 2020) and DDIM (Song et al., 2021), and neither sampler with CFG generates the gamma-powered distribution p(x|c)^gamma p(x)^{1-gamma}. Then, we clarify the behavior of CFG by showing that it is a kind of predictor-corrector method (Song et al., 2020) that alternates between denoising and sharpening, which we call predictor-corrector guidance (PCG). We prove that in the SDE limit, CFG is actually equivalent to combining a DDIM predictor for the conditional distribution together with a Langevin dynamics corrector for a gamma-powered distribution (with a carefully chosen gamma). Our work thus provides a lens to theoretically understand CFG by embedding it in a broader design space of principled sampling methods.
Curvature-Informed SGD via General Purpose Lie-Group Preconditioners
We present a novel approach to accelerate stochastic gradient descent (SGD) by utilizing curvature information obtained from Hessian-vector products or finite differences of parameters and gradients, similar to the BFGS algorithm. Our approach involves two preconditioners: a matrix-free preconditioner and a low-rank approximation preconditioner. We update both preconditioners online using a criterion that is robust to stochastic gradient noise and does not require line search or damping. To preserve the corresponding symmetry or invariance, our preconditioners are constrained to certain connected Lie groups. The Lie group's equivariance property simplifies the preconditioner fitting process, while its invariance property eliminates the need for damping, which is commonly required in second-order optimizers. As a result, the learning rate for parameter updating and the step size for preconditioner fitting are naturally normalized, and their default values work well in most scenarios. Our proposed approach offers a promising direction for improving the convergence of SGD with low computational overhead. We demonstrate that Preconditioned SGD (PSGD) outperforms SoTA on Vision, NLP, and RL tasks across multiple modern deep-learning architectures. We have provided code for reproducing toy and large scale experiments in this paper.
Understanding Incremental Learning of Gradient Descent: A Fine-grained Analysis of Matrix Sensing
It is believed that Gradient Descent (GD) induces an implicit bias towards good generalization in training machine learning models. This paper provides a fine-grained analysis of the dynamics of GD for the matrix sensing problem, whose goal is to recover a low-rank ground-truth matrix from near-isotropic linear measurements. It is shown that GD with small initialization behaves similarly to the greedy low-rank learning heuristics (Li et al., 2020) and follows an incremental learning procedure (Gissin et al., 2019): GD sequentially learns solutions with increasing ranks until it recovers the ground truth matrix. Compared to existing works which only analyze the first learning phase for rank-1 solutions, our result provides characterizations for the whole learning process. Moreover, besides the over-parameterized regime that many prior works focused on, our analysis of the incremental learning procedure also applies to the under-parameterized regime. Finally, we conduct numerical experiments to confirm our theoretical findings.
Exact Gauss-Newton Optimization for Training Deep Neural Networks
We present EGN, a stochastic second-order optimization algorithm that combines the generalized Gauss-Newton (GN) Hessian approximation with low-rank linear algebra to compute the descent direction. Leveraging the Duncan-Guttman matrix identity, the parameter update is obtained by factorizing a matrix which has the size of the mini-batch. This is particularly advantageous for large-scale machine learning problems where the dimension of the neural network parameter vector is several orders of magnitude larger than the batch size. Additionally, we show how improvements such as line search, adaptive regularization, and momentum can be seamlessly added to EGN to further accelerate the algorithm. Moreover, under mild assumptions, we prove that our algorithm converges to an epsilon-stationary point at a linear rate. Finally, our numerical experiments demonstrate that EGN consistently exceeds, or at most matches the generalization performance of well-tuned SGD, Adam, and SGN optimizers across various supervised and reinforcement learning tasks.
Generalized Recorrupted-to-Recorrupted: Self-Supervised Learning Beyond Gaussian Noise
Recorrupted-to-Recorrupted (R2R) has emerged as a methodology for training deep networks for image restoration in a self-supervised manner from noisy measurement data alone, demonstrating equivalence in expectation to the supervised squared loss in the case of Gaussian noise. However, its effectiveness with non-Gaussian noise remains unexplored. In this paper, we propose Generalized R2R (GR2R), extending the R2R framework to handle a broader class of noise distribution as additive noise like log-Rayleigh and address the natural exponential family including Poisson and Gamma noise distributions, which play a key role in many applications including low-photon imaging and synthetic aperture radar. We show that the GR2R loss is an unbiased estimator of the supervised loss and that the popular Stein's unbiased risk estimator can be seen as a special case. A series of experiments with Gaussian, Poisson, and Gamma noise validate GR2R's performance, showing its effectiveness compared to other self-supervised methods.
Towards Understanding the Mechanisms of Classifier-Free Guidance
Classifier-free guidance (CFG) is a core technique powering state-of-the-art image generation systems, yet its underlying mechanisms remain poorly understood. In this work, we begin by analyzing CFG in a simplified linear diffusion model, where we show its behavior closely resembles that observed in the nonlinear case. Our analysis reveals that linear CFG improves generation quality via three distinct components: (i) a mean-shift term that approximately steers samples in the direction of class means, (ii) a positive Contrastive Principal Components (CPC) term that amplifies class-specific features, and (iii) a negative CPC term that suppresses generic features prevalent in unconditional data. We then verify that these insights in real-world, nonlinear diffusion models: over a broad range of noise levels, linear CFG resembles the behavior of its nonlinear counterpart. Although the two eventually diverge at low noise levels, we discuss how the insights from the linear analysis still shed light on the CFG's mechanism in the nonlinear regime.
Deep Regularized Compound Gaussian Network for Solving Linear Inverse Problems
Incorporating prior information into inverse problems, e.g. via maximum-a-posteriori estimation, is an important technique for facilitating robust inverse problem solutions. In this paper, we devise two novel approaches for linear inverse problems that permit problem-specific statistical prior selections within the compound Gaussian (CG) class of distributions. The CG class subsumes many commonly used priors in signal and image reconstruction methods including those of sparsity-based approaches. The first method developed is an iterative algorithm, called generalized compound Gaussian least squares (G-CG-LS), that minimizes a regularized least squares objective function where the regularization enforces a CG prior. G-CG-LS is then unrolled, or unfolded, to furnish our second method, which is a novel deep regularized (DR) neural network, called DR-CG-Net, that learns the prior information. A detailed computational theory on convergence properties of G-CG-LS and thorough numerical experiments for DR-CG-Net are provided. Due to the comprehensive nature of the CG prior, these experiments show that DR-CG-Net outperforms competitive prior art methods in tomographic imaging and compressive sensing, especially in challenging low-training scenarios.
Dataset Distillation with Convexified Implicit Gradients
We propose a new dataset distillation algorithm using reparameterization and convexification of implicit gradients (RCIG), that substantially improves the state-of-the-art. To this end, we first formulate dataset distillation as a bi-level optimization problem. Then, we show how implicit gradients can be effectively used to compute meta-gradient updates. We further equip the algorithm with a convexified approximation that corresponds to learning on top of a frozen finite-width neural tangent kernel. Finally, we improve bias in implicit gradients by parameterizing the neural network to enable analytical computation of final-layer parameters given the body parameters. RCIG establishes the new state-of-the-art on a diverse series of dataset distillation tasks. Notably, with one image per class, on resized ImageNet, RCIG sees on average a 108% improvement over the previous state-of-the-art distillation algorithm. Similarly, we observed a 66% gain over SOTA on Tiny-ImageNet and 37% on CIFAR-100.
Transforming a Non-Differentiable Rasterizer into a Differentiable One with Stochastic Gradient Estimation
We show how to transform a non-differentiable rasterizer into a differentiable one with minimal engineering efforts and no external dependencies (no Pytorch/Tensorflow). We rely on Stochastic Gradient Estimation, a technique that consists of rasterizing after randomly perturbing the scene's parameters such that their gradient can be stochastically estimated and descended. This method is simple and robust but does not scale in dimensionality (number of scene parameters). Our insight is that the number of parameters contributing to a given rasterized pixel is bounded. Estimating and averaging gradients on a per-pixel basis hence bounds the dimensionality of the underlying optimization problem and makes the method scalable. Furthermore, it is simple to track per-pixel contributing parameters by rasterizing ID- and UV-buffers, which are trivial additions to a rasterization engine if not already available. With these minor modifications, we obtain an in-engine optimizer for 3D assets with millions of geometry and texture parameters.
SORSA: Singular Values and Orthonormal Regularized Singular Vectors Adaptation of Large Language Models
The rapid advancement in large language models (LLMs) comes with a significant increase in their parameter size, presenting challenges for adaptation and fine-tuning. Parameter-efficient fine-tuning (PEFT) methods are widely used to adapt LLMs for downstream tasks efficiently. In this paper, we propose Singular Values and Orthonormal Regularized Singular Vectors Adaptation, or SORSA, a novel PEFT method. We introduce a method to analyze the variation of the parameters by performing singular value decomposition (SVD) and discuss and analyze SORSA's superiority in minimizing the alteration in the SVD aspect. Each SORSA adapter consists of two main parts: trainable principal singular weights W_p = U_p Sigma_p V^top_p, and frozen residual weights W_r = U_r Sigma_r V^top_r. These parts are initialized by performing SVD on pre-trained weights. Moreover, we implement and analyze an orthonormal regularizer, which could effectively transfer the scaling information into Sigma_p and ultimately allows the training process to be more efficient. SORSA adapters could be merged during inference, thus eliminating any inference latency. After all, SORSA shows a faster convergence than PiSSA and LoRA in our experiments. On the MATH benchmark, Llama 2 7B adapted using SORSA achieved 10.36% accuracy, outperforming LoRA (5.50%), Full FT (7.22%), and PiSSA (7.44%). On the GSM-8K benchmark, SORSA achieved 56.03% accuracy, surpassing LoRA (42.30%), Full FT (49.05%), and PiSSA (53.07%). We conclude that SORSA offers a new perspective on parameter-efficient fine-tuning, demonstrating remarkable performance. The code is available at https://github.com/Gunale0926/SORSA.
Enhancing Generalization of Invisible Facial Privacy Cloak via Gradient Accumulation
The blooming of social media and face recognition (FR) systems has increased people's concern about privacy and security. A new type of adversarial privacy cloak (class-universal) can be applied to all the images of regular users, to prevent malicious FR systems from acquiring their identity information. In this work, we discover the optimization dilemma in the existing methods -- the local optima problem in large-batch optimization and the gradient information elimination problem in small-batch optimization. To solve these problems, we propose Gradient Accumulation (GA) to aggregate multiple small-batch gradients into a one-step iterative gradient to enhance the gradient stability and reduce the usage of quantization operations. Experiments show that our proposed method achieves high performance on the Privacy-Commons dataset against black-box face recognition models.
Lottery Tickets in Evolutionary Optimization: On Sparse Backpropagation-Free Trainability
Is the lottery ticket phenomenon an idiosyncrasy of gradient-based training or does it generalize to evolutionary optimization? In this paper we establish the existence of highly sparse trainable initializations for evolution strategies (ES) and characterize qualitative differences compared to gradient descent (GD)-based sparse training. We introduce a novel signal-to-noise iterative pruning procedure, which incorporates loss curvature information into the network pruning step. This can enable the discovery of even sparser trainable network initializations when using black-box evolution as compared to GD-based optimization. Furthermore, we find that these initializations encode an inductive bias, which transfers across different ES, related tasks and even to GD-based training. Finally, we compare the local optima resulting from the different optimization paradigms and sparsity levels. In contrast to GD, ES explore diverse and flat local optima and do not preserve linear mode connectivity across sparsity levels and independent runs. The results highlight qualitative differences between evolution and gradient-based learning dynamics, which can be uncovered by the study of iterative pruning procedures.
Axiomatic Attribution for Deep Networks
We study the problem of attributing the prediction of a deep network to its input features, a problem previously studied by several other works. We identify two fundamental axioms---Sensitivity and Implementation Invariance that attribution methods ought to satisfy. We show that they are not satisfied by most known attribution methods, which we consider to be a fundamental weakness of those methods. We use the axioms to guide the design of a new attribution method called Integrated Gradients. Our method requires no modification to the original network and is extremely simple to implement; it just needs a few calls to the standard gradient operator. We apply this method to a couple of image models, a couple of text models and a chemistry model, demonstrating its ability to debug networks, to extract rules from a network, and to enable users to engage with models better.
Noise-Level Diffusion Guidance: Well Begun is Half Done
Diffusion models have achieved state-of-the-art image generation. However, the random Gaussian noise used to start the diffusion process influences the final output, causing variations in image quality and prompt adherence. Existing noise-level optimization approaches generally rely on extra dataset construction, additional networks, or backpropagation-based optimization, limiting their practicality. In this paper, we propose Noise Level Guidance (NLG), a simple, efficient, and general noise-level optimization approach that refines initial noise by increasing the likelihood of its alignment with general guidance - requiring no additional training data, auxiliary networks, or backpropagation. The proposed NLG approach provides a unified framework generalizable to both conditional and unconditional diffusion models, accommodating various forms of diffusion-level guidance. Extensive experiments on five standard benchmarks demonstrate that our approach enhances output generation quality and input condition adherence. By seamlessly integrating with existing guidance methods while maintaining computational efficiency, our method establishes NLG as a practical and scalable enhancement to diffusion models. Code can be found at https://github.com/harveymannering/NoiseLevelGuidance.
GIO: Gradient Information Optimization for Training Dataset Selection
It is often advantageous to train models on a subset of the available train examples, because the examples are of variable quality or because one would like to train with fewer examples, without sacrificing performance. We present Gradient Information Optimization (GIO), a scalable, task-agnostic approach to this data selection problem that requires only a small set of (unlabeled) examples representing a target distribution. GIO begins from a natural, information-theoretic objective that is intractable in practice. Our contribution is in showing that it can be made highly scalable through a simple relaxation of the objective and a highly efficient implementation. In experiments with machine translation, spelling correction, and image recognition, we show that GIO delivers outstanding results with very small train sets. These findings are robust to different representation models and hyperparameters for GIO itself. GIO is task- and domain-agnostic and can be applied out-of-the-box to new datasets and domains.
GLAD: Generalizable Tuning for Vision-Language Models
Pre-trained vision-language models, such as CLIP, show impressive zero-shot recognition ability and can be easily transferred to specific downstream tasks via prompt tuning, even with limited training data. However, existing prompt tuning methods face two main challenges: (1) In few-shot scenarios, data scarcity often leads to overfitting, making the model sensitive to changes in the input domain. (2) To mitigate overfitting, these methods typically rely on complex task-specific model architectures and sensitive hyperparameter tuning, severely restricting their general applicability. To address these issues, we propose a simpler and more general framework called GLAD (Generalizable LoRA tuning with RegulArized GraDient). We show that merely applying LoRA achieves performance in downstream tasks comparable to current state-of-the-art prompt-based methods. While LoRA is effective and easy to use, it remains susceptible to overfitting in few-shot learning scenarios. To mitigate this risk, we introduce a gradient-based regularization technique. This technique effectively steers the optimization trajectory, encouraging the model to find a more stable parameter region that is robust to variations in data distribution. Through extensive experiments conducted on 15 benchmark datasets, we demonstrate that GLAD outperforms previous tuning approaches in terms of base-to-novel class generalization, image domain generalization, and cross-dataset generalization. The code will be publicly available.
Iterative Token Evaluation and Refinement for Real-World Super-Resolution
Real-world image super-resolution (RWSR) is a long-standing problem as low-quality (LQ) images often have complex and unidentified degradations. Existing methods such as Generative Adversarial Networks (GANs) or continuous diffusion models present their own issues including GANs being difficult to train while continuous diffusion models requiring numerous inference steps. In this paper, we propose an Iterative Token Evaluation and Refinement (ITER) framework for RWSR, which utilizes a discrete diffusion model operating in the discrete token representation space, i.e., indexes of features extracted from a VQGAN codebook pre-trained with high-quality (HQ) images. We show that ITER is easier to train than GANs and more efficient than continuous diffusion models. Specifically, we divide RWSR into two sub-tasks, i.e., distortion removal and texture generation. Distortion removal involves simple HQ token prediction with LQ images, while texture generation uses a discrete diffusion model to iteratively refine the distortion removal output with a token refinement network. In particular, we propose to include a token evaluation network in the discrete diffusion process. It learns to evaluate which tokens are good restorations and helps to improve the iterative refinement results. Moreover, the evaluation network can first check status of the distortion removal output and then adaptively select total refinement steps needed, thereby maintaining a good balance between distortion removal and texture generation. Extensive experimental results show that ITER is easy to train and performs well within just 8 iterative steps. Our codes will be available publicly.
Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion Models
Recently, diffusion models have made remarkable progress in text-to-image (T2I) generation, synthesizing images with high fidelity and diverse contents. Despite this advancement, latent space smoothness within diffusion models remains largely unexplored. Smooth latent spaces ensure that a perturbation on an input latent corresponds to a steady change in the output image. This property proves beneficial in downstream tasks, including image interpolation, inversion, and editing. In this work, we expose the non-smoothness of diffusion latent spaces by observing noticeable visual fluctuations resulting from minor latent variations. To tackle this issue, we propose Smooth Diffusion, a new category of diffusion models that can be simultaneously high-performing and smooth. Specifically, we introduce Step-wise Variation Regularization to enforce the proportion between the variations of an arbitrary input latent and that of the output image is a constant at any diffusion training step. In addition, we devise an interpolation standard deviation (ISTD) metric to effectively assess the latent space smoothness of a diffusion model. Extensive quantitative and qualitative experiments demonstrate that Smooth Diffusion stands out as a more desirable solution not only in T2I generation but also across various downstream tasks. Smooth Diffusion is implemented as a plug-and-play Smooth-LoRA to work with various community models. Code is available at https://github.com/SHI-Labs/Smooth-Diffusion.
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order Information
We present a novel adaptive optimization algorithm for large-scale machine learning problems. Equipped with a low-cost estimate of local curvature and Lipschitz smoothness, our method dynamically adapts the search direction and step-size. The search direction contains gradient information preconditioned by a well-scaled diagonal preconditioning matrix that captures the local curvature information. Our methodology does not require the tedious task of learning rate tuning, as the learning rate is updated automatically without adding an extra hyperparameter. We provide convergence guarantees on a comprehensive collection of optimization problems, including convex, strongly convex, and nonconvex problems, in both deterministic and stochastic regimes. We also conduct an extensive empirical evaluation on standard machine learning problems, justifying our algorithm's versatility and demonstrating its strong performance compared to other start-of-the-art first-order and second-order methods.
Accelerate High-Quality Diffusion Models with Inner Loop Feedback
We propose Inner Loop Feedback (ILF), a novel approach to accelerate diffusion models' inference. ILF trains a lightweight module to predict future features in the denoising process by leveraging the outputs from a chosen diffusion backbone block at a given time step. This approach exploits two key intuitions; (1) the outputs of a given block at adjacent time steps are similar, and (2) performing partial computations for a step imposes a lower burden on the model than skipping the step entirely. Our method is highly flexible, since we find that the feedback module itself can simply be a block from the diffusion backbone, with all settings copied. Its influence on the diffusion forward can be tempered with a learnable scaling factor from zero initialization. We train this module using distillation losses; however, unlike some prior work where a full diffusion backbone serves as the student, our model freezes the backbone, training only the feedback module. While many efforts to optimize diffusion models focus on achieving acceptable image quality in extremely few steps (1-4 steps), our emphasis is on matching best case results (typically achieved in 20 steps) while significantly reducing runtime. ILF achieves this balance effectively, demonstrating strong performance for both class-to-image generation with diffusion transformer (DiT) and text-to-image generation with DiT-based PixArt-alpha and PixArt-sigma. The quality of ILF's 1.7x-1.8x speedups are confirmed by FID, CLIP score, CLIP Image Quality Assessment, ImageReward, and qualitative comparisons. Project information is available at https://mgwillia.github.io/ilf.
Implicit Neural Spatial Representations for Time-dependent PDEs
Implicit Neural Spatial Representation (INSR) has emerged as an effective representation of spatially-dependent vector fields. This work explores solving time-dependent PDEs with INSR. Classical PDE solvers introduce both temporal and spatial discretizations. Common spatial discretizations include meshes and meshless point clouds, where each degree-of-freedom corresponds to a location in space. While these explicit spatial correspondences are intuitive to model and understand, these representations are not necessarily optimal for accuracy, memory usage, or adaptivity. Keeping the classical temporal discretization unchanged (e.g., explicit/implicit Euler), we explore INSR as an alternative spatial discretization, where spatial information is implicitly stored in the neural network weights. The network weights then evolve over time via time integration. Our approach does not require any training data generated by existing solvers because our approach is the solver itself. We validate our approach on various PDEs with examples involving large elastic deformations, turbulent fluids, and multi-scale phenomena. While slower to compute than traditional representations, our approach exhibits higher accuracy and lower memory consumption. Whereas classical solvers can dynamically adapt their spatial representation only by resorting to complex remeshing algorithms, our INSR approach is intrinsically adaptive. By tapping into the rich literature of classic time integrators, e.g., operator-splitting schemes, our method enables challenging simulations in contact mechanics and turbulent flows where previous neural-physics approaches struggle. Videos and codes are available on the project page: http://www.cs.columbia.edu/cg/INSR-PDE/
Beyond Log-Concavity: Theory and Algorithm for Sum-Log-Concave Optimization
This paper extends the classic theory of convex optimization to the minimization of functions that are equal to the negated logarithm of what we term as a sum-log-concave function, i.e., a sum of log-concave functions. In particular, we show that such functions are in general not convex but still satisfy generalized convexity inequalities. These inequalities unveil the key importance of a certain vector that we call the cross-gradient and that is, in general, distinct from the usual gradient. Thus, we propose the Cross Gradient Descent (XGD) algorithm moving in the opposite direction of the cross-gradient and derive a convergence analysis. As an application of our sum-log-concave framework, we introduce the so-called checkered regression method relying on a sum-log-concave function. This classifier extends (multiclass) logistic regression to non-linearly separable problems since it is capable of tessellating the feature space by using any given number of hyperplanes, creating a checkerboard-like pattern of decision regions.
Null It Out: Guarding Protected Attributes by Iterative Nullspace Projection
The ability to control for the kinds of information encoded in neural representation has a variety of use cases, especially in light of the challenge of interpreting these models. We present Iterative Null-space Projection (INLP), a novel method for removing information from neural representations. Our method is based on repeated training of linear classifiers that predict a certain property we aim to remove, followed by projection of the representations on their null-space. By doing so, the classifiers become oblivious to that target property, making it hard to linearly separate the data according to it. While applicable for multiple uses, we evaluate our method on bias and fairness use-cases, and show that our method is able to mitigate bias in word embeddings, as well as to increase fairness in a setting of multi-class classification.
Input Convex Gradient Networks
The gradients of convex functions are expressive models of non-trivial vector fields. For example, Brenier's theorem yields that the optimal transport map between any two measures on Euclidean space under the squared distance is realized as a convex gradient, which is a key insight used in recent generative flow models. In this paper, we study how to model convex gradients by integrating a Jacobian-vector product parameterized by a neural network, which we call the Input Convex Gradient Network (ICGN). We theoretically study ICGNs and compare them to taking the gradient of an Input-Convex Neural Network (ICNN), empirically demonstrating that a single layer ICGN can fit a toy example better than a single layer ICNN. Lastly, we explore extensions to deeper networks and connections to constructions from Riemannian geometry.
Gradient Matching for Domain Generalization
Machine learning systems typically assume that the distributions of training and test sets match closely. However, a critical requirement of such systems in the real world is their ability to generalize to unseen domains. Here, we propose an inter-domain gradient matching objective that targets domain generalization by maximizing the inner product between gradients from different domains. Since direct optimization of the gradient inner product can be computationally prohibitive -- requires computation of second-order derivatives -- we derive a simpler first-order algorithm named Fish that approximates its optimization. We demonstrate the efficacy of Fish on 6 datasets from the Wilds benchmark, which captures distribution shift across a diverse range of modalities. Our method produces competitive results on these datasets and surpasses all baselines on 4 of them. We perform experiments on both the Wilds benchmark, which captures distribution shift in the real world, as well as datasets in DomainBed benchmark that focuses more on synthetic-to-real transfer. Our method produces competitive results on both benchmarks, demonstrating its effectiveness across a wide range of domain generalization tasks.
In-context Learning and Gradient Descent Revisited
In-context learning (ICL) has shown impressive results in few-shot learning tasks, yet its underlying mechanism is still not fully understood. A recent line of work suggests that ICL performs gradient descent (GD)-based optimization implicitly. While appealing, much of the research focuses on simplified settings, where the parameters of a shallow model are optimized. In this work, we revisit evidence for ICL-GD correspondence on realistic NLP tasks and models. We find gaps in evaluation, both in terms of problematic metrics and insufficient baselines. We show that surprisingly, even untrained models achieve comparable ICL-GD similarity scores despite not exhibiting ICL. Next, we explore a major discrepancy in the flow of information throughout the model between ICL and GD, which we term Layer Causality. We propose a simple GD-based optimization procedure that respects layer causality, and show it improves similarity scores significantly.
InterFormer: Real-time Interactive Image Segmentation
Interactive image segmentation enables annotators to efficiently perform pixel-level annotation for segmentation tasks. However, the existing interactive segmentation pipeline suffers from inefficient computations of interactive models because of the following two issues. First, annotators' later click is based on models' feedback of annotators' former click. This serial interaction is unable to utilize model's parallelism capabilities. Second, in each interaction step, the model handles the invariant image along with the sparse variable clicks, resulting in a process that's highly repetitive and redundant. For efficient computations, we propose a method named InterFormer that follows a new pipeline to address these issues. InterFormer extracts and preprocesses the computationally time-consuming part i.e. image processing from the existing process. Specifically, InterFormer employs a large vision transformer (ViT) on high-performance devices to preprocess images in parallel, and then uses a lightweight module called interactive multi-head self attention (I-MSA) for interactive segmentation. Furthermore, the I-MSA module's deployment on low-power devices extends the practical application of interactive segmentation. The I-MSA module utilizes the preprocessed features to efficiently response to the annotator inputs in real-time. The experiments on several datasets demonstrate the effectiveness of InterFormer, which outperforms previous interactive segmentation models in terms of computational efficiency and segmentation quality, achieve real-time high-quality interactive segmentation on CPU-only devices. The code is available at https://github.com/YouHuang67/InterFormer.
Solving the Catastrophic Forgetting Problem in Generalized Category Discovery
Generalized Category Discovery (GCD) aims to identify a mix of known and novel categories within unlabeled data sets, providing a more realistic setting for image recognition. Essentially, GCD needs to remember existing patterns thoroughly to recognize novel categories. Recent state-of-the-art method SimGCD transfers the knowledge from known-class data to the learning of novel classes through debiased learning. However, some patterns are catastrophically forgot during adaptation and thus lead to poor performance in novel categories classification. To address this issue, we propose a novel learning approach, LegoGCD, which is seamlessly integrated into previous methods to enhance the discrimination of novel classes while maintaining performance on previously encountered known classes. Specifically, we design two types of techniques termed as Local Entropy Regularization (LER) and Dual-views Kullback Leibler divergence constraint (DKL). The LER optimizes the distribution of potential known class samples in unlabeled data, thus ensuring the preservation of knowledge related to known categories while learning novel classes. Meanwhile, DKL introduces Kullback Leibler divergence to encourage the model to produce a similar prediction distribution of two view samples from the same image. In this way, it successfully avoids mismatched prediction and generates more reliable potential known class samples simultaneously. Extensive experiments validate that the proposed LegoGCD effectively addresses the known category forgetting issue across all datasets, eg, delivering a 7.74% and 2.51% accuracy boost on known and novel classes in CUB, respectively. Our code is available at: https://github.com/Cliffia123/LegoGCD.
Visual Explanations via Iterated Integrated Attributions
We introduce Iterated Integrated Attributions (IIA) - a generic method for explaining the predictions of vision models. IIA employs iterative integration across the input image, the internal representations generated by the model, and their gradients, yielding precise and focused explanation maps. We demonstrate the effectiveness of IIA through comprehensive evaluations across various tasks, datasets, and network architectures. Our results showcase that IIA produces accurate explanation maps, outperforming other state-of-the-art explanation techniques.
Delving into Inter-Image Invariance for Unsupervised Visual Representations
Contrastive learning has recently shown immense potential in unsupervised visual representation learning. Existing studies in this track mainly focus on intra-image invariance learning. The learning typically uses rich intra-image transformations to construct positive pairs and then maximizes agreement using a contrastive loss. The merits of inter-image invariance, conversely, remain much less explored. One major obstacle to exploit inter-image invariance is that it is unclear how to reliably construct inter-image positive pairs, and further derive effective supervision from them since no pair annotations are available. In this work, we present a comprehensive empirical study to better understand the role of inter-image invariance learning from three main constituting components: pseudo-label maintenance, sampling strategy, and decision boundary design. To facilitate the study, we introduce a unified and generic framework that supports the integration of unsupervised intra- and inter-image invariance learning. Through carefully-designed comparisons and analysis, multiple valuable observations are revealed: 1) online labels converge faster and perform better than offline labels; 2) semi-hard negative samples are more reliable and unbiased than hard negative samples; 3) a less stringent decision boundary is more favorable for inter-image invariance learning. With all the obtained recipes, our final model, namely InterCLR, shows consistent improvements over state-of-the-art intra-image invariance learning methods on multiple standard benchmarks. We hope this work will provide useful experience for devising effective unsupervised inter-image invariance learning. Code: https://github.com/open-mmlab/mmselfsup.
An adaptively inexact first-order method for bilevel optimization with application to hyperparameter learning
Various tasks in data science are modeled utilizing the variational regularization approach, where manually selecting regularization parameters presents a challenge. The difficulty gets exacerbated when employing regularizers involving a large number of hyperparameters. To overcome this challenge, bilevel learning can be employed to learn such parameters from data. However, neither exact function values nor exact gradients with respect to the hyperparameters are attainable, necessitating methods that only rely on inexact evaluation of such quantities. State-of-the-art inexact gradient-based methods a priori select a sequence of the required accuracies and cannot identify an appropriate step size since the Lipschitz constant of the hypergradient is unknown. In this work, we propose an algorithm with backtracking line search that only relies on inexact function evaluations and hypergradients and show convergence to a stationary point. Furthermore, the proposed algorithm determines the required accuracy dynamically rather than manually selected before running it. Our numerical experiments demonstrate the efficiency and feasibility of our approach for hyperparameter estimation on a range of relevant problems in imaging and data science such as total variation and field of experts denoising and multinomial logistic regression. Particularly, the results show that the algorithm is robust to its own hyperparameters such as the initial accuracies and step size.
InternSVG: Towards Unified SVG Tasks with Multimodal Large Language Models
General SVG modeling remains challenging due to fragmented datasets, limited transferability of methods across tasks, and the difficulty of handling structural complexity. In response, we leverage the strong transfer and generalization capabilities of multimodal large language models (MLLMs) to achieve unified modeling for SVG understanding, editing, and generation. We present the InternSVG family, an integrated data-benchmark-model suite. At its core is SAgoge, the largest and most comprehensive multimodal dataset for SVG tasks, encompassing both static graphics and dynamic animations. It covers icons, long-sequence illustrations, scientific diagrams, and dynamic animations, supporting tasks of varied difficulty levels and providing deeper hierarchies with richer attributes compared to previous datasets. Based on this resource, we introduce SArena, a companion benchmark with comprehensive task definitions and standardized evaluation that aligns with the domains and difficulty spectrum covered by SAgoge. Building on these foundations, we propose InternSVG, a unified MLLM for SVG understanding, editing, and generation with SVG-specific special tokens, subword-based embedding initialization, and a two-stage training strategy that progresses from short static SVGs to long-sequence illustrations and complex animations. This unified formulation induces positive transfer and improves overall performance. Experiments on SArena and prior benchmark confirm that InternSVG achieves substantial gains and consistently outperforms leading open and proprietary counterparts.
SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition
Deep face recognition has achieved great success due to large-scale training databases and rapidly developing loss functions. The existing algorithms devote to realizing an ideal idea: minimizing the intra-class distance and maximizing the inter-class distance. However, they may neglect that there are also low quality training images which should not be optimized in this strict way. Considering the imperfection of training databases, we propose that intra-class and inter-class objectives can be optimized in a moderate way to mitigate overfitting problem, and further propose a novel loss function, named sigmoid-constrained hypersphere loss (SFace). Specifically, SFace imposes intra-class and inter-class constraints on a hypersphere manifold, which are controlled by two sigmoid gradient re-scale functions respectively. The sigmoid curves precisely re-scale the intra-class and inter-class gradients so that training samples can be optimized to some degree. Therefore, SFace can make a better balance between decreasing the intra-class distances for clean examples and preventing overfitting to the label noise, and contributes more robust deep face recognition models. Extensive experiments of models trained on CASIA-WebFace, VGGFace2, and MS-Celeb-1M databases, and evaluated on several face recognition benchmarks, such as LFW, MegaFace and IJB-C databases, have demonstrated the superiority of SFace.
STEREOFOG -- Computational DeFogging via Image-to-Image Translation on a real-world Dataset
Image-to-Image translation (I2I) is a subtype of Machine Learning (ML) that has tremendous potential in applications where two domains of images and the need for translation between the two exist, such as the removal of fog. For example, this could be useful for autonomous vehicles, which currently struggle with adverse weather conditions like fog. However, datasets for I2I tasks are not abundant and typically hard to acquire. Here, we introduce STEREOFOG, a dataset comprised of 10,067 paired fogged and clear images, captured using a custom-built device, with the purpose of exploring I2I's potential in this domain. It is the only real-world dataset of this kind to the best of our knowledge. Furthermore, we apply and optimize the pix2pix I2I ML framework to this dataset. With the final model achieving an average Complex Wavelet-Structural Similarity (CW-SSIM) score of 0.76, we prove the technique's suitability for the problem.
RegGS: Unposed Sparse Views Gaussian Splatting with 3DGS Registration
3D Gaussian Splatting (3DGS) has demonstrated its potential in reconstructing scenes from unposed images. However, optimization-based 3DGS methods struggle with sparse views due to limited prior knowledge. Meanwhile, feed-forward Gaussian approaches are constrained by input formats, making it challenging to incorporate more input views. To address these challenges, we propose RegGS, a 3D Gaussian registration-based framework for reconstructing unposed sparse views. RegGS aligns local 3D Gaussians generated by a feed-forward network into a globally consistent 3D Gaussian representation. Technically, we implement an entropy-regularized Sinkhorn algorithm to efficiently solve the optimal transport Mixture 2-Wasserstein (MW_2) distance, which serves as an alignment metric for Gaussian mixture models (GMMs) in Sim(3) space. Furthermore, we design a joint 3DGS registration module that integrates the MW_2 distance, photometric consistency, and depth geometry. This enables a coarse-to-fine registration process while accurately estimating camera poses and aligning the scene. Experiments on the RE10K and ACID datasets demonstrate that RegGS effectively registers local Gaussians with high fidelity, achieving precise pose estimation and high-quality novel-view synthesis. Project page: https://3dagentworld.github.io/reggs/.
Accelerated Gradient Methods for Sparse Statistical Learning with Nonconvex Penalties
Nesterov's accelerated gradient (AG) is a popular technique to optimize objective functions comprising two components: a convex loss and a penalty function. While AG methods perform well for convex penalties, such as the LASSO, convergence issues may arise when it is applied to nonconvex penalties, such as SCAD. A recent proposal generalizes Nesterov's AG method to the nonconvex setting. The proposed algorithm requires specification of several hyperparameters for its practical application. Aside from some general conditions, there is no explicit rule for selecting the hyperparameters, and how different selection can affect convergence of the algorithm. In this article, we propose a hyperparameter setting based on the complexity upper bound to accelerate convergence, and consider the application of this nonconvex AG algorithm to high-dimensional linear and logistic sparse learning problems. We further establish the rate of convergence and present a simple and useful bound to characterize our proposed optimal damping sequence. Simulation studies show that convergence can be made, on average, considerably faster than that of the conventional proximal gradient algorithm. Our experiments also show that the proposed method generally outperforms the current state-of-the-art methods in terms of signal recovery.
A second-order-like optimizer with adaptive gradient scaling for deep learning
In this empirical article, we introduce INNAprop, an optimization algorithm that combines the INNA method with the RMSprop adaptive gradient scaling. It leverages second-order information and rescaling while keeping the memory requirements of standard DL methods as AdamW or SGD with momentum.After having recalled our geometrical motivations, we provide quite extensive experiments. On image classification (CIFAR-10, ImageNet) and language modeling (GPT-2), INNAprop consistently matches or outperforms AdamW both in training speed and accuracy, with minimal hyperparameter tuning in large-scale settings. Our code is publicly available at https://github.com/innaprop/innaprop.
Interpretation of Intracardiac Electrograms Through Textual Representations
Understanding the irregular electrical activity of atrial fibrillation (AFib) has been a key challenge in electrocardiography. For serious cases of AFib, catheter ablations are performed to collect intracardiac electrograms (EGMs). EGMs offer intricately detailed and localized electrical activity of the heart and are an ideal modality for interpretable cardiac studies. Recent advancements in artificial intelligence (AI) has allowed some works to utilize deep learning frameworks to interpret EGMs during AFib. Additionally, language models (LMs) have shown exceptional performance in being able to generalize to unseen domains, especially in healthcare. In this study, we are the first to leverage pretrained LMs for finetuning of EGM interpolation and AFib classification via masked language modeling. We formulate the EGM as a textual sequence and present competitive performances on AFib classification compared against other representations. Lastly, we provide a comprehensive interpretability study to provide a multi-perspective intuition of the model's behavior, which could greatly benefit the clinical use.
Implicit Regularization Effects of the Sobolev Norms in Image Processing
In this paper, we propose to use the general L^2-based Sobolev norms, i.e., H^s norms where sin R, to measure the data discrepancy due to noise in image processing tasks that are formulated as optimization problems. As opposed to a popular trend of developing regularization methods, we emphasize that an implicit regularization effect can be achieved through the class of Sobolev norms as the data-fitting term. Specifically, we analyze that the implicit regularization comes from the weights that the H^s norm imposes on different frequency contents of an underlying image. We further analyze the underlying noise assumption of using the Sobolev norm as the data-fitting term from a Bayesian perspective, build the connections with the Sobolev gradient-based methods and discuss the preconditioning effects on the convergence rate of the gradient descent algorithm, leading to a better understanding of functional spaces/metrics and the optimization process involved in image processing. Numerical results in full waveform inversion, image denoising and deblurring demonstrate the implicit regularization effects.
How Instruction and Reasoning Data shape Post-Training: Data Quality through the Lens of Layer-wise Gradients
As the post-training of large language models (LLMs) advances from instruction-following to complex reasoning tasks, understanding how different data affect finetuning dynamics remains largely unexplored. In this paper, we present a spectral analysis of layer-wise gradients induced by low/high-quality instruction and reasoning data for LLM post-training. Our analysis reveals that widely-studied metrics for data evaluation, e.g., IFD, InsTag, Difficulty, and Reward, can be explained and unified by spectral properties computed from gradients' singular value decomposition (SVD). Specifically, higher-quality data are usually associated with lower nuclear norms and higher effective ranks. Notably, effective rank exhibits better robustness and resolution than nuclear norm in capturing subtle quality differences. For example, reasoning data achieves substantially higher effective ranks than instruction data, implying richer gradient structures on more complex tasks. Our experiments also highlight that models within the same family share similar gradient patterns regardless of their sizes, whereas different model families diverge significantly. Providing a unified view on the effects of data quality across instruction and reasoning data, this work illuminates the interplay between data quality and training stability, shedding novel insights into developing better data exploration strategies for post-training.
I-Segmenter: Integer-Only Vision Transformer for Efficient Semantic Segmentation
Vision Transformers (ViTs) have recently achieved strong results in semantic segmentation, yet their deployment on resource-constrained devices remains limited due to their high memory footprint and computational cost. Quantization offers an effective strategy to improve efficiency, but ViT-based segmentation models are notoriously fragile under low precision, as quantization errors accumulate across deep encoder-decoder pipelines. We introduce I-Segmenter, the first fully integer-only ViT segmentation framework. Building on the Segmenter architecture, I-Segmenter systematically replaces floating-point operations with integer-only counterparts. To further stabilize both training and inference, we propose lambda-ShiftGELU, a novel activation function that mitigates the limitations of uniform quantization in handling long-tailed activation distributions. In addition, we remove the L2 normalization layer and replace bilinear interpolation in the decoder with nearest neighbor upsampling, ensuring integer-only execution throughout the computational graph. Extensive experiments show that I-Segmenter achieves accuracy within a reasonable margin of its FP32 baseline (5.1 % on average), while reducing model size by up to 3.8x and enabling up to 1.2x faster inference with optimized runtimes. Notably, even in one-shot PTQ with a single calibration image, I-Segmenter delivers competitive accuracy, underscoring its practicality for real-world deployment.
OVOR: OnePrompt with Virtual Outlier Regularization for Rehearsal-Free Class-Incremental Learning
Recent works have shown that by using large pre-trained models along with learnable prompts, rehearsal-free methods for class-incremental learning (CIL) settings can achieve superior performance to prominent rehearsal-based ones. Rehearsal-free CIL methods struggle with distinguishing classes from different tasks, as those are not trained together. In this work we propose a regularization method based on virtual outliers to tighten decision boundaries of the classifier, such that confusion of classes among different tasks is mitigated. Recent prompt-based methods often require a pool of task-specific prompts, in order to prevent overwriting knowledge of previous tasks with that of the new task, leading to extra computation in querying and composing an appropriate prompt from the pool. This additional cost can be eliminated, without sacrificing accuracy, as we reveal in the paper. We illustrate that a simplified prompt-based method can achieve results comparable to previous state-of-the-art (SOTA) methods equipped with a prompt pool, using much less learnable parameters and lower inference cost. Our regularization method has demonstrated its compatibility with different prompt-based methods, boosting those previous SOTA rehearsal-free CIL methods' accuracy on the ImageNet-R and CIFAR-100 benchmarks. Our source code is available at https://github.com/jpmorganchase/ovor.
The Implicit Regularization of Dynamical Stability in Stochastic Gradient Descent
In this paper, we study the implicit regularization of stochastic gradient descent (SGD) through the lens of {\em dynamical stability} (Wu et al., 2018). We start by revising existing stability analyses of SGD, showing how the Frobenius norm and trace of Hessian relate to different notions of stability. Notably, if a global minimum is linearly stable for SGD, then the trace of Hessian must be less than or equal to 2/eta, where eta denotes the learning rate. By contrast, for gradient descent (GD), the stability imposes a similar constraint but only on the largest eigenvalue of Hessian. We then turn to analyze the generalization properties of these stable minima, focusing specifically on two-layer ReLU networks and diagonal linear networks. Notably, we establish the {\em equivalence} between these metrics of sharpness and certain parameter norms for the two models, which allows us to show that the stable minima of SGD provably generalize well. By contrast, the stability-induced regularization of GD is provably too weak to ensure satisfactory generalization. This discrepancy provides an explanation of why SGD often generalizes better than GD. Note that the learning rate (LR) plays a pivotal role in the strength of stability-induced regularization. As the LR increases, the regularization effect becomes more pronounced, elucidating why SGD with a larger LR consistently demonstrates superior generalization capabilities. Additionally, numerical experiments are provided to support our theoretical findings.
Interactive Medical Image Segmentation: A Benchmark Dataset and Baseline
Interactive Medical Image Segmentation (IMIS) has long been constrained by the limited availability of large-scale, diverse, and densely annotated datasets, which hinders model generalization and consistent evaluation across different models. In this paper, we introduce the IMed-361M benchmark dataset, a significant advancement in general IMIS research. First, we collect and standardize over 6.4 million medical images and their corresponding ground truth masks from multiple data sources. Then, leveraging the strong object recognition capabilities of a vision foundational model, we automatically generated dense interactive masks for each image and ensured their quality through rigorous quality control and granularity management. Unlike previous datasets, which are limited by specific modalities or sparse annotations, IMed-361M spans 14 modalities and 204 segmentation targets, totaling 361 million masks-an average of 56 masks per image. Finally, we developed an IMIS baseline network on this dataset that supports high-quality mask generation through interactive inputs, including clicks, bounding boxes, text prompts, and their combinations. We evaluate its performance on medical image segmentation tasks from multiple perspectives, demonstrating superior accuracy and scalability compared to existing interactive segmentation models. To facilitate research on foundational models in medical computer vision, we release the IMed-361M and model at https://github.com/uni-medical/IMIS-Bench.
Improved Robustness for Deep Learning-based Segmentation of Multi-Center Myocardial Perfusion MRI Datasets Using Data Adaptive Uncertainty-guided Space-time Analysis
Background. Fully automatic analysis of myocardial perfusion MRI datasets enables rapid and objective reporting of stress/rest studies in patients with suspected ischemic heart disease. Developing deep learning techniques that can analyze multi-center datasets despite limited training data and variations in software and hardware is an ongoing challenge. Methods. Datasets from 3 medical centers acquired at 3T (n = 150 subjects) were included: an internal dataset (inD; n = 95) and two external datasets (exDs; n = 55) used for evaluating the robustness of the trained deep neural network (DNN) models against differences in pulse sequence (exD-1) and scanner vendor (exD-2). A subset of inD (n = 85) was used for training/validation of a pool of DNNs for segmentation, all using the same spatiotemporal U-Net architecture and hyperparameters but with different parameter initializations. We employed a space-time sliding-patch analysis approach that automatically yields a pixel-wise "uncertainty map" as a byproduct of the segmentation process. In our approach, a given test case is segmented by all members of the DNN pool and the resulting uncertainty maps are leveraged to automatically select the "best" one among the pool of solutions. Results. The proposed DAUGS analysis approach performed similarly to the established approach on the internal dataset (p = n.s.) whereas it significantly outperformed on the external datasets (p < 0.005 for exD-1 and exD-2). Moreover, the number of image series with "failed" segmentation was significantly lower for the proposed vs. the established approach (4.3% vs. 17.1%, p < 0.0005). Conclusions. The proposed DAUGS analysis approach has the potential to improve the robustness of deep learning methods for segmentation of multi-center stress perfusion datasets with variations in the choice of pulse sequence, site location or scanner vendor.
DREAM: Scalable Red Teaming for Text-to-Image Generative Systems via Distribution Modeling
Despite the integration of safety alignment and external filters, text-to-image (T2I) generative models are still susceptible to producing harmful content, such as sexual or violent imagery. This raises serious concerns about unintended exposure and potential misuse. Red teaming, which aims to proactively identify diverse prompts that can elicit unsafe outputs from the T2I system (including the core generative model as well as potential external safety filters and other processing components), is increasingly recognized as an essential method for assessing and improving safety before real-world deployment. Yet, existing automated red teaming approaches often treat prompt discovery as an isolated, prompt-level optimization task, which limits their scalability, diversity, and overall effectiveness. To bridge this gap, in this paper, we propose DREAM, a scalable red teaming framework to automatically uncover diverse problematic prompts from a given T2I system. Unlike most prior works that optimize prompts individually, DREAM directly models the probabilistic distribution of the target system's problematic prompts, which enables explicit optimization over both effectiveness and diversity, and allows efficient large-scale sampling after training. To achieve this without direct access to representative training samples, we draw inspiration from energy-based models and reformulate the objective into simple and tractable objectives. We further introduce GC-SPSA, an efficient optimization algorithm that provide stable gradient estimates through the long and potentially non-differentiable T2I pipeline. The effectiveness of DREAM is validated through extensive experiments, demonstrating that it surpasses 9 state-of-the-art baselines by a notable margin across a broad range of T2I models and safety filters in terms of prompt success rate and diversity.
Joint Discriminative-Generative Modeling via Dual Adversarial Training
Simultaneously achieving robust classification and high-fidelity generative modeling within a single framework presents a significant challenge. Hybrid approaches, such as Joint Energy-Based Models (JEM), interpret classifiers as EBMs but are often limited by the instability and poor sample quality inherent in SGLD-based training. We address these limitations by proposing a novel training framework that integrates adversarial training (AT) principles for both discriminative robustness and stable generative learning. The proposed method introduces three key innovations: (1) the replacement of SGLD-based JEM learning with a stable, AT-based approach that optimizes the energy function by discriminating between real data and PGD-generated contrastive samples using the BCE loss; (2) synergistic adversarial training for the discriminative component that enhances classification robustness while eliminating the need for explicit gradient penalties; and (3) a two-stage training procedure to resolve the incompatibility between batch normalization and EBM training. Experiments on CIFAR-10, CIFAR-100, and ImageNet demonstrate that our method substantially improves adversarial robustness over existing hybrid models while maintaining competitive generative performance. On ImageNet, when optimized for generative modeling, our model's generative fidelity surpasses that of BigGAN and approaches diffusion models, representing the first MCMC-based EBM approach to achieve high-quality generation on complex, high-resolution datasets. Our approach addresses key stability issues that have limited JEM scaling and demonstrates that adversarial training can serve as an effective foundation for unified frameworks capable of generating and robustly classifying visual data.
Global Convergence of Sub-gradient Method for Robust Matrix Recovery: Small Initialization, Noisy Measurements, and Over-parameterization
In this work, we study the performance of sub-gradient method (SubGM) on a natural nonconvex and nonsmooth formulation of low-rank matrix recovery with ell_1-loss, where the goal is to recover a low-rank matrix from a limited number of measurements, a subset of which may be grossly corrupted with noise. We study a scenario where the rank of the true solution is unknown and over-estimated instead. The over-estimation of the rank gives rise to an over-parameterized model in which there are more degrees of freedom than needed. Such over-parameterization may lead to overfitting, or adversely affect the performance of the algorithm. We prove that a simple SubGM with small initialization is agnostic to both over-parameterization and noise in the measurements. In particular, we show that small initialization nullifies the effect of over-parameterization on the performance of SubGM, leading to an exponential improvement in its convergence rate. Moreover, we provide the first unifying framework for analyzing the behavior of SubGM under both outlier and Gaussian noise models, showing that SubGM converges to the true solution, even under arbitrarily large and arbitrarily dense noise values, and--perhaps surprisingly--even if the globally optimal solutions do not correspond to the ground truth. At the core of our results is a robust variant of restricted isometry property, called Sign-RIP, which controls the deviation of the sub-differential of the ell_1-loss from that of an ideal, expected loss. As a byproduct of our results, we consider a subclass of robust low-rank matrix recovery with Gaussian measurements, and show that the number of required samples to guarantee the global convergence of SubGM is independent of the over-parameterized rank.
Efficient Image Deblurring Networks based on Diffusion Models
This article introduces a sliding window model for defocus deblurring that achieves the best performance to date with extremely low memory usage. Named Swintormer, the method utilizes a diffusion model to generate latent prior features that assist in restoring more detailed images. It also extends the sliding window strategy to specialized Transformer blocks for efficient inference. Additionally, we have further optimized Multiply-Accumulate operations (Macs). Compared to the currently top-performing GRL method, our Swintormer model drastically reduces computational complexity from 140.35 GMACs to 8.02 GMacs, while also improving the Signal-to-Noise Ratio (SNR) for defocus deblurring from 27.04 dB to 27.07 dB. This new method allows for the processing of higher resolution images on devices with limited memory, significantly expanding potential application scenarios. The article concludes with an ablation study that provides an in-depth analysis of the impact of each network module on final performance. The source code and model will be available at the following website: https://github.com/bnm6900030/swintormer.
Prognostic Model for Idiopathic Pulmonary Fibrosis Using Context-Aware Sequential-Parallel Hybrid Transformer and Enriched Clinical Information
Idiopathic pulmonary fibrosis (IPF) is a progressive disease that irreversibly transforms lung tissue into rigid fibrotic structures, leading to debilitating symptoms such as shortness of breath and chronic fatigue. The heterogeneity and complexity of this disease, particularly regarding its severity and progression rate, have made predicting its future course a complex and challenging task. Besides, traditional diagnostic methods based on clinical evaluations and imaging have limitations in capturing the disease's complexity. Using the Kaggle Pulmonary Fibrosis Progression dataset, which includes computed tomography images, and clinical information, the model predicts changes in forced vital capacity (FVC), a key progression indicator. Our method uses a proposed context-aware sequential-parallel hybrid transformer model and clinical information enrichment for its prediction. The proposed method achieved a Laplace Log-Likelihood score of -6.508, outperforming prior methods and demonstrating superior predictive capabilities. These results highlight the potential of advanced deep learning techniques to provide more accurate and timely predictions, offering a transformative approach to the diagnosis and management of IPF, with implications for improved patient outcomes and therapeutic advancements.
I-Max: Maximize the Resolution Potential of Pre-trained Rectified Flow Transformers with Projected Flow
Rectified Flow Transformers (RFTs) offer superior training and inference efficiency, making them likely the most viable direction for scaling up diffusion models. However, progress in generation resolution has been relatively slow due to data quality and training costs. Tuning-free resolution extrapolation presents an alternative, but current methods often reduce generative stability, limiting practical application. In this paper, we review existing resolution extrapolation methods and introduce the I-Max framework to maximize the resolution potential of Text-to-Image RFTs. I-Max features: (i) a novel Projected Flow strategy for stable extrapolation and (ii) an advanced inference toolkit for generalizing model knowledge to higher resolutions. Experiments with Lumina-Next-2K and Flux.1-dev demonstrate I-Max's ability to enhance stability in resolution extrapolation and show that it can bring image detail emergence and artifact correction, confirming the practical value of tuning-free resolution extrapolation.
Gradient-Normalized Smoothness for Optimization with Approximate Hessians
In this work, we develop new optimization algorithms that use approximate second-order information combined with the gradient regularization technique to achieve fast global convergence rates for both convex and non-convex objectives. The key innovation of our analysis is a novel notion called Gradient-Normalized Smoothness, which characterizes the maximum radius of a ball around the current point that yields a good relative approximation of the gradient field. Our theory establishes a natural intrinsic connection between Hessian approximation and the linearization of the gradient. Importantly, Gradient-Normalized Smoothness does not depend on the specific problem class of the objective functions, while effectively translating local information about the gradient field and Hessian approximation into the global behavior of the method. This new concept equips approximate second-order algorithms with universal global convergence guarantees, recovering state-of-the-art rates for functions with H\"older-continuous Hessians and third derivatives, quasi-self-concordant functions, as well as smooth classes in first-order optimization. These rates are achieved automatically and extend to broader classes, such as generalized self-concordant functions. We demonstrate direct applications of our results for global linear rates in logistic regression and softmax problems with approximate Hessians, as well as in non-convex optimization using Fisher and Gauss-Newton approximations.
Tensor Gaussian Process with Contraction for Multi-Channel Imaging Analysis
Multi-channel imaging data is a prevalent data format in scientific fields such as astronomy and biology. The structured information and the high dimensionality of these 3-D tensor data makes the analysis an intriguing but challenging topic for statisticians and practitioners. The low-rank scalar-on-tensor regression model, in particular, has received widespread attention and has been re-formulated as a tensor Gaussian Process (Tensor-GP) model with multi-linear kernel in Yu et al. (2018). In this paper, we extend the Tensor-GP model by integrating a dimensionality reduction technique, called tensor contraction, with a Tensor-GP for a scalar-on-tensor regression task with multi-channel imaging data. This is motivated by the solar flare forecasting problem with high dimensional multi-channel imaging data. We first estimate a latent, reduced-size tensor for each data tensor and then apply a multi-linear Tensor-GP on the latent tensor data for prediction. We introduce an anisotropic total-variation regularization when conducting the tensor contraction to obtain a sparse and smooth latent tensor. We then propose an alternating proximal gradient descent algorithm for estimation. We validate our approach via extensive simulation studies and applying it to the solar flare forecasting problem.
Gradient Norm Aware Minimization Seeks First-Order Flatness and Improves Generalization
Recently, flat minima are proven to be effective for improving generalization and sharpness-aware minimization (SAM) achieves state-of-the-art performance. Yet the current definition of flatness discussed in SAM and its follow-ups are limited to the zeroth-order flatness (i.e., the worst-case loss within a perturbation radius). We show that the zeroth-order flatness can be insufficient to discriminate minima with low generalization error from those with high generalization error both when there is a single minimum or multiple minima within the given perturbation radius. Thus we present first-order flatness, a stronger measure of flatness focusing on the maximal gradient norm within a perturbation radius which bounds both the maximal eigenvalue of Hessian at local minima and the regularization function of SAM. We also present a novel training procedure named Gradient norm Aware Minimization (GAM) to seek minima with uniformly small curvature across all directions. Experimental results show that GAM improves the generalization of models trained with current optimizers such as SGD and AdamW on various datasets and networks. Furthermore, we show that GAM can help SAM find flatter minima and achieve better generalization.
Parallelly Tempered Generative Adversarial Networks
A generative adversarial network (GAN) has been a representative backbone model in generative artificial intelligence (AI) because of its powerful performance in capturing intricate data-generating processes. However, the GAN training is well-known for its notorious training instability, usually characterized by the occurrence of mode collapse. Through the lens of gradients' variance, this work particularly analyzes the training instability and inefficiency in the presence of mode collapse by linking it to multimodality in the target distribution. To ease the raised training issues from severe multimodality, we introduce a novel GAN training framework that leverages a series of tempered distributions produced via convex interpolation. With our newly developed GAN objective function, the generator can learn all the tempered distributions simultaneously, conceptually resonating with the parallel tempering in Statistics. Our simulation studies demonstrate the superiority of our approach over existing popular training strategies in both image and tabular data synthesis. We theoretically analyze that such significant improvement can arise from reducing the variance of gradient estimates by using the tempered distributions. Finally, we further develop a variant of the proposed framework aimed at generating fair synthetic data which is one of the growing interests in the field of trustworthy AI.
Modulate Your Spectrum in Self-Supervised Learning
Whitening loss offers a theoretical guarantee against feature collapse in self-supervised learning (SSL) with joint embedding architectures. Typically, it involves a hard whitening approach, transforming the embedding and applying loss to the whitened output. In this work, we introduce Spectral Transformation (ST), a framework to modulate the spectrum of embedding and to seek for functions beyond whitening that can avoid dimensional collapse. We show that whitening is a special instance of ST by definition, and our empirical investigations unveil other ST instances capable of preventing collapse. Additionally, we propose a novel ST instance named IterNorm with trace loss (INTL). Theoretical analysis confirms INTL's efficacy in preventing collapse and modulating the spectrum of embedding toward equal-eigenvalues during optimization. Our experiments on ImageNet classification and COCO object detection demonstrate INTL's potential in learning superior representations. The code is available at https://github.com/winci-ai/INTL.
VI3NR: Variance Informed Initialization for Implicit Neural Representations
Implicit Neural Representations (INRs) are a versatile and powerful tool for encoding various forms of data, including images, videos, sound, and 3D shapes. A critical factor in the success of INRs is the initialization of the network, which can significantly impact the convergence and accuracy of the learned model. Unfortunately, commonly used neural network initializations are not widely applicable for many activation functions, especially those used by INRs. In this paper, we improve upon previous initialization methods by deriving an initialization that has stable variance across layers, and applies to any activation function. We show that this generalizes many previous initialization methods, and has even better stability for well studied activations. We also show that our initialization leads to improved results with INR activation functions in multiple signal modalities. Our approach is particularly effective for Gaussian INRs, where we demonstrate that the theory of our initialization matches with task performance in multiple experiments, allowing us to achieve improvements in image, audio, and 3D surface reconstruction.
Implicit factorized transformer approach to fast prediction of turbulent channel flows
Transformer neural operators have recently become an effective approach for surrogate modeling of systems governed by partial differential equations (PDEs). In this paper, we introduce a modified implicit factorized transformer (IFactFormer-m) model which replaces the original chained factorized attention with parallel factorized attention. The IFactFormer-m model successfully performs long-term predictions for turbulent channel flow, whereas the original IFactFormer (IFactFormer-o), Fourier neural operator (FNO), and implicit Fourier neural operator (IFNO) exhibit a poor performance. Turbulent channel flows are simulated by direct numerical simulation using fine grids at friction Reynolds numbers Re_{tau}approx 180,395,590, and filtered to coarse grids for training neural operator. The neural operator takes the current flow field as input and predicts the flow field at the next time step, and long-term prediction is achieved in the posterior through an autoregressive approach. The results show that IFactFormer-m, compared to other neural operators and the traditional large eddy simulation (LES) methods including dynamic Smagorinsky model (DSM) and the wall-adapted local eddy-viscosity (WALE) model, reduces prediction errors in the short term, and achieves stable and accurate long-term prediction of various statistical properties and flow structures, including the energy spectrum, mean streamwise velocity, root mean square (rms) values of fluctuating velocities, Reynolds shear stress, and spatial structures of instantaneous velocity. Moreover, the trained IFactFormer-m is much faster than traditional LES methods. By analyzing the attention kernels, we elucidate the reasons why IFactFormer-m converges faster and achieves a stable and accurate long-term prediction compared to IFactFormer-o. Code and data are available at: https://github.com/huiyu-2002/IFactFormer-m.
RAG-IGBench: Innovative Evaluation for RAG-based Interleaved Generation in Open-domain Question Answering
In real-world scenarios, providing user queries with visually enhanced responses can considerably benefit understanding and memory, underscoring the great value of interleaved image-text generation. Despite recent progress, like the visual autoregressive model that unifies text and image processing in a single transformer architecture, generating high-quality interleaved content remains challenging. Moreover, evaluations of these interleaved sequences largely remain underexplored, with existing benchmarks often limited by unimodal metrics that inadequately assess the intricacies of combined image-text outputs. To address these issues, we present RAG-IGBench, a thorough benchmark designed specifically to evaluate the task of Interleaved Generation based on Retrieval-Augmented Generation (RAG-IG) in open-domain question answering. RAG-IG integrates multimodal large language models (MLLMs) with retrieval mechanisms, enabling the models to access external image-text information for generating coherent multimodal content. Distinct from previous datasets, RAG-IGBench draws on the latest publicly available content from social platforms and introduces innovative evaluation metrics that measure the quality of text and images, as well as their consistency. Through extensive experiments with state-of-the-art MLLMs (both open-source and proprietary) on RAG-IGBench, we provide an in-depth analysis examining the capabilities and limitations of these models. Additionally, we validate our evaluation metrics by demonstrating their high correlation with human assessments. Models fine-tuned on RAG-IGBench's training set exhibit improved performance across multiple benchmarks, confirming both the quality and practical utility of our dataset. Our benchmark is available at https://github.com/USTC-StarTeam/RAG-IGBench.
3DGS-LM: Faster Gaussian-Splatting Optimization with Levenberg-Marquardt
We present 3DGS-LM, a new method that accelerates the reconstruction of 3D Gaussian Splatting (3DGS) by replacing its ADAM optimizer with a tailored Levenberg-Marquardt (LM). Existing methods reduce the optimization time by decreasing the number of Gaussians or by improving the implementation of the differentiable rasterizer. However, they still rely on the ADAM optimizer to fit Gaussian parameters of a scene in thousands of iterations, which can take up to an hour. To this end, we change the optimizer to LM that runs in conjunction with the 3DGS differentiable rasterizer. For efficient GPU parallization, we propose a caching data structure for intermediate gradients that allows us to efficiently calculate Jacobian-vector products in custom CUDA kernels. In every LM iteration, we calculate update directions from multiple image subsets using these kernels and combine them in a weighted mean. Overall, our method is 30% faster than the original 3DGS while obtaining the same reconstruction quality. Our optimization is also agnostic to other methods that acclerate 3DGS, thus enabling even faster speedups compared to vanilla 3DGS.
Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood
Training energy-based models (EBMs) on high-dimensional data can be both challenging and time-consuming, and there exists a noticeable gap in sample quality between EBMs and other generative frameworks like GANs and diffusion models. To close this gap, inspired by the recent efforts of learning EBMs by maximizing diffusion recovery likelihood (DRL), we propose cooperative diffusion recovery likelihood (CDRL), an effective approach to tractably learn and sample from a series of EBMs defined on increasingly noisy versions of a dataset, paired with an initializer model for each EBM. At each noise level, the two models are jointly estimated within a cooperative training framework: samples from the initializer serve as starting points that are refined by a few MCMC sampling steps from the EBM. The EBM is then optimized by maximizing recovery likelihood, while the initializer model is optimized by learning from the difference between the refined samples and the initial samples. In addition, we made several practical designs for EBM training to further improve the sample quality. Combining these advances, our approach significantly boost the generation performance compared to existing EBM methods on CIFAR-10 and ImageNet datasets. We also demonstrate the effectiveness of our models for several downstream tasks, including classifier-free guided generation, compositional generation, image inpainting and out-of-distribution detection.
Improving Sample Quality of Diffusion Models Using Self-Attention Guidance
Denoising diffusion models (DDMs) have attracted attention for their exceptional generation quality and diversity. This success is largely attributed to the use of class- or text-conditional diffusion guidance methods, such as classifier and classifier-free guidance. In this paper, we present a more comprehensive perspective that goes beyond the traditional guidance methods. From this generalized perspective, we introduce novel condition- and training-free strategies to enhance the quality of generated images. As a simple solution, blur guidance improves the suitability of intermediate samples for their fine-scale information and structures, enabling diffusion models to generate higher quality samples with a moderate guidance scale. Improving upon this, Self-Attention Guidance (SAG) uses the intermediate self-attention maps of diffusion models to enhance their stability and efficacy. Specifically, SAG adversarially blurs only the regions that diffusion models attend to at each iteration and guides them accordingly. Our experimental results show that our SAG improves the performance of various diffusion models, including ADM, IDDPM, Stable Diffusion, and DiT. Moreover, combining SAG with conventional guidance methods leads to further improvement.
Re-Thinking Inverse Graphics With Large Language Models
Inverse graphics -- the task of inverting an image into physical variables that, when rendered, enable reproduction of the observed scene -- is a fundamental challenge in computer vision and graphics. Disentangling an image into its constituent elements, such as the shape, color, and material properties of the objects of the 3D scene that produced it, requires a comprehensive understanding of the environment. This requirement limits the ability of existing carefully engineered approaches to generalize across domains. Inspired by the zero-shot ability of large language models (LLMs) to generalize to novel contexts, we investigate the possibility of leveraging the broad world knowledge encoded in such models in solving inverse-graphics problems. To this end, we propose the Inverse-Graphics Large Language Model (IG-LLM), an inverse-graphics framework centered around an LLM, that autoregressively decodes a visual embedding into a structured, compositional 3D-scene representation. We incorporate a frozen pre-trained visual encoder and a continuous numeric head to enable end-to-end training. Through our investigation, we demonstrate the potential of LLMs to facilitate inverse graphics through next-token prediction, without the use of image-space supervision. Our analysis opens up new possibilities for precise spatial reasoning about images that exploit the visual knowledge of LLMs. We will release our code and data to ensure the reproducibility of our investigation and to facilitate future research at https://ig-llm.is.tue.mpg.de/
Displacement-Sparse Neural Optimal Transport
Optimal transport (OT) aims to find a map T that transports mass from one probability measure to another while minimizing a cost function. Recently, neural OT solvers have gained popularity in high dimensional biological applications such as drug perturbation, due to their superior computational and memory efficiency compared to traditional exact Sinkhorn solvers. However, the overly complex high dimensional maps learned by neural OT solvers often suffer from poor interpretability. Prior work addressed this issue in the context of exact OT solvers by introducing displacement-sparse maps via designed elastic cost, but such method failed to be applied to neural OT settings. In this work, we propose an intuitive and theoretically grounded approach to learning displacement-sparse maps within neural OT solvers. Building on our new formulation, we introduce a novel smoothed ell_0 regularizer that outperforms the ell_1 based alternative from prior work. Leveraging Input Convex Neural Network's flexibility, we further develop a heuristic framework for adaptively controlling sparsity intensity, an approach uniquely enabled by the neural OT paradigm. We demonstrate the necessity of this adaptive framework in large-scale, high-dimensional training, showing not only improved accuracy but also practical ease of use for downstream applications.
DGNO: A Novel Physics-aware Neural Operator for Solving Forward and Inverse PDE Problems based on Deep, Generative Probabilistic Modeling
Solving parametric partial differential equations (PDEs) and associated PDE-based, inverse problems is a central task in engineering and physics, yet existing neural operator methods struggle with high-dimensional, discontinuous inputs and require large amounts of {\em labeled} training data. We propose the Deep Generative Neural Operator (DGNO), a physics-aware framework that addresses these challenges by leveraging a deep, generative, probabilistic model in combination with a set of lower-dimensional, latent variables that simultaneously encode PDE-inputs and PDE-outputs. This formulation can make use of unlabeled data and significantly improves inverse problem-solving, particularly for discontinuous or discrete-valued input functions. DGNO enforces physics constraints without labeled data by incorporating as virtual observables, weak-form residuals based on compactly supported radial basis functions (CSRBFs). These relax regularity constraints and eliminate higher-order derivatives from the objective function. We also introduce MultiONet, a novel neural operator architecture, which is a more expressive generalization of the popular DeepONet that significantly enhances the approximating power of the proposed model. These innovations make DGNO particularly effective for challenging forward and inverse, PDE-based problems, such as those involving multi-phase media. Numerical experiments demonstrate that DGNO achieves higher accuracy across multiple benchmarks while exhibiting robustness to noise and strong generalization to out-of-distribution cases. Its adaptability, and the ability to handle sparse, noisy data while providing probabilistic estimates, make DGNO a powerful tool for scientific and engineering applications.
DiffIR: Efficient Diffusion Model for Image Restoration
Diffusion model (DM) has achieved SOTA performance by modeling the image synthesis process into a sequential application of a denoising network. However, different from image synthesis, image restoration (IR) has a strong constraint to generate results in accordance with ground-truth. Thus, for IR, traditional DMs running massive iterations on a large model to estimate whole images or feature maps is inefficient. To address this issue, we propose an efficient DM for IR (DiffIR), which consists of a compact IR prior extraction network (CPEN), dynamic IR transformer (DIRformer), and denoising network. Specifically, DiffIR has two training stages: pretraining and training DM. In pretraining, we input ground-truth images into CPEN_{S1} to capture a compact IR prior representation (IPR) to guide DIRformer. In the second stage, we train the DM to directly estimate the same IRP as pretrained CPEN_{S1} only using LQ images. We observe that since the IPR is only a compact vector, DiffIR can use fewer iterations than traditional DM to obtain accurate estimations and generate more stable and realistic results. Since the iterations are few, our DiffIR can adopt a joint optimization of CPEN_{S2}, DIRformer, and denoising network, which can further reduce the estimation error influence. We conduct extensive experiments on several IR tasks and achieve SOTA performance while consuming less computational costs. Code is available at https://github.com/Zj-BinXia/DiffIR.
The Power of Preconditioning in Overparameterized Low-Rank Matrix Sensing
We propose ScaledGD(\lambda), a preconditioned gradient descent method to tackle the low-rank matrix sensing problem when the true rank is unknown, and when the matrix is possibly ill-conditioned. Using overparametrized factor representations, ScaledGD(\lambda) starts from a small random initialization, and proceeds by gradient descent with a specific form of damped preconditioning to combat bad curvatures induced by overparameterization and ill-conditioning. At the expense of light computational overhead incurred by preconditioners, ScaledGD(\lambda) is remarkably robust to ill-conditioning compared to vanilla gradient descent (GD) even with overprameterization. Specifically, we show that, under the Gaussian design, ScaledGD(\lambda) converges to the true low-rank matrix at a constant linear rate after a small number of iterations that scales only logarithmically with respect to the condition number and the problem dimension. This significantly improves over the convergence rate of vanilla GD which suffers from a polynomial dependency on the condition number. Our work provides evidence on the power of preconditioning in accelerating the convergence without hurting generalization in overparameterized learning.
Changing the Training Data Distribution to Reduce Simplicity Bias Improves In-distribution Generalization
Can we modify the training data distribution to encourage the underlying optimization method toward finding solutions with superior generalization performance on in-distribution data? In this work, we approach this question for the first time by comparing the inductive bias of gradient descent (GD) with that of sharpness-aware minimization (SAM). By studying a two-layer CNN, we rigorously prove that SAM learns different features more uniformly, particularly in early epochs. That is, SAM is less susceptible to simplicity bias compared to GD. We also show that examples containing features that are learned early are separable from the rest based on the model's output. Based on this observation, we propose a method that (i) clusters examples based on the network output early in training, (ii) identifies a cluster of examples with similar network output, and (iii) upsamples the rest of examples only once to alleviate the simplicity bias. We show empirically that USEFUL effectively improves the generalization performance on the original data distribution when training with various gradient methods, including (S)GD and SAM. Notably, we demonstrate that our method can be combined with SAM variants and existing data augmentation strategies to achieve, to the best of our knowledge, state-of-the-art performance for training ResNet18 on CIFAR10, STL10, CINIC10, Tiny-ImageNet; ResNet34 on CIFAR100; and VGG19 and DenseNet121 on CIFAR10.
Identity-Seeking Self-Supervised Representation Learning for Generalizable Person Re-identification
This paper aims to learn a domain-generalizable (DG) person re-identification (ReID) representation from large-scale videos without any annotation. Prior DG ReID methods employ limited labeled data for training due to the high cost of annotation, which restricts further advances. To overcome the barriers of data and annotation, we propose to utilize large-scale unsupervised data for training. The key issue lies in how to mine identity information. To this end, we propose an Identity-seeking Self-supervised Representation learning (ISR) method. ISR constructs positive pairs from inter-frame images by modeling the instance association as a maximum-weight bipartite matching problem. A reliability-guided contrastive loss is further presented to suppress the adverse impact of noisy positive pairs, ensuring that reliable positive pairs dominate the learning process. The training cost of ISR scales approximately linearly with the data size, making it feasible to utilize large-scale data for training. The learned representation exhibits superior generalization ability. Without human annotation and fine-tuning, ISR achieves 87.0\% Rank-1 on Market-1501 and 56.4\% Rank-1 on MSMT17, outperforming the best supervised domain-generalizable method by 5.0\% and 19.5\%, respectively. In the pre-trainingrightarrowfine-tuning scenario, ISR achieves state-of-the-art performance, with 88.4\% Rank-1 on MSMT17. The code is at https://github.com/dcp15/ISR_ICCV2023_Oral.
Gradient-Free Classifier Guidance for Diffusion Model Sampling
Image generation using diffusion models have demonstrated outstanding learning capabilities, effectively capturing the full distribution of the training dataset. They are known to generate wide variations in sampled images, albeit with a trade-off in image fidelity. Guided sampling methods, such as classifier guidance (CG) and classifier-free guidance (CFG), focus sampling in well-learned high-probability regions to generate images of high fidelity, but each has its limitations. CG is computationally expensive due to the use of back-propagation for classifier gradient descent, while CFG, being gradient-free, is more efficient but compromises class label alignment compared to CG. In this work, we propose an efficient guidance method that fully utilizes a pre-trained classifier without using gradient descent. By using the classifier solely in inference mode, a time-adaptive reference class label and corresponding guidance scale are determined at each time step for guided sampling. Experiments on both class-conditioned and text-to-image generation diffusion models demonstrate that the proposed Gradient-free Classifier Guidance (GFCG) method consistently improves class prediction accuracy. We also show GFCG to be complementary to other guided sampling methods like CFG. When combined with the state-of-the-art Autoguidance (ATG), without additional computational overhead, it enhances image fidelity while preserving diversity. For ImageNet 512times512, we achieve a record FD_{DINOv2} of 23.09, while simultaneously attaining a higher classification Precision (94.3%) compared to ATG (90.2%)
Optimization Methods for Large-Scale Machine Learning
This paper provides a review and commentary on the past, present, and future of numerical optimization algorithms in the context of machine learning applications. Through case studies on text classification and the training of deep neural networks, we discuss how optimization problems arise in machine learning and what makes them challenging. A major theme of our study is that large-scale machine learning represents a distinctive setting in which the stochastic gradient (SG) method has traditionally played a central role while conventional gradient-based nonlinear optimization techniques typically falter. Based on this viewpoint, we present a comprehensive theory of a straightforward, yet versatile SG algorithm, discuss its practical behavior, and highlight opportunities for designing algorithms with improved performance. This leads to a discussion about the next generation of optimization methods for large-scale machine learning, including an investigation of two main streams of research on techniques that diminish noise in the stochastic directions and methods that make use of second-order derivative approximations.
Crafting Distribution Shifts for Validation and Training in Single Source Domain Generalization
Single-source domain generalization attempts to learn a model on a source domain and deploy it to unseen target domains. Limiting access only to source domain data imposes two key challenges - how to train a model that can generalize and how to verify that it does. The standard practice of validation on the training distribution does not accurately reflect the model's generalization ability, while validation on the test distribution is a malpractice to avoid. In this work, we construct an independent validation set by transforming source domain images with a comprehensive list of augmentations, covering a broad spectrum of potential distribution shifts in target domains. We demonstrate a high correlation between validation and test performance for multiple methods and across various datasets. The proposed validation achieves a relative accuracy improvement over the standard validation equal to 15.4% or 1.6% when used for method selection or learning rate tuning, respectively. Furthermore, we introduce a novel family of methods that increase the shape bias through enhanced edge maps. To benefit from the augmentations during training and preserve the independence of the validation set, a k-fold validation process is designed to separate the augmentation types used in training and validation. The method that achieves the best performance on the augmented validation is selected from the proposed family. It achieves state-of-the-art performance on various standard benchmarks. Code at: https://github.com/NikosEfth/crafting-shifts
DeCRED: Decoder-Centric Regularization for Encoder-Decoder Based Speech Recognition
This paper presents a simple yet effective regularization for the internal language model induced by the decoder in encoder-decoder ASR models, thereby improving robustness and generalization in both in- and out-of-domain settings. The proposed method, Decoder-Centric Regularization in Encoder-Decoder (DeCRED), adds auxiliary classifiers to the decoder, enabling next token prediction via intermediate logits. Empirically, DeCRED reduces the mean internal LM BPE perplexity by 36.6% relative to 11 test sets. Furthermore, this translates into actual WER improvements over the baseline in 5 of 7 in-domain and 3 of 4 out-of-domain test sets, reducing macro WER from 6.4% to 6.3% and 18.2% to 16.2%, respectively. On TEDLIUM3, DeCRED achieves 7.0% WER, surpassing the baseline and encoder-centric InterCTC regularization by 0.6% and 0.5%, respectively. Finally, we compare DeCRED with OWSM v3.1 and Whisper-medium, showing competitive WERs despite training on much less data with fewer parameters.
GRANDE: Gradient-Based Decision Tree Ensembles for Tabular Data
Despite the success of deep learning for text and image data, tree-based ensemble models are still state-of-the-art for machine learning with heterogeneous tabular data. However, there is a significant need for tabular-specific gradient-based methods due to their high flexibility. In this paper, we propose GRANDE, GRAdieNt-Based Decision Tree Ensembles, a novel approach for learning hard, axis-aligned decision tree ensembles using end-to-end gradient descent. GRANDE is based on a dense representation of tree ensembles, which affords to use backpropagation with a straight-through operator to jointly optimize all model parameters. Our method combines axis-aligned splits, which is a useful inductive bias for tabular data, with the flexibility of gradient-based optimization. Furthermore, we introduce an advanced instance-wise weighting that facilitates learning representations for both, simple and complex relations, within a single model. We conducted an extensive evaluation on a predefined benchmark with 19 classification datasets and demonstrate that our method outperforms existing gradient-boosting and deep learning frameworks on most datasets. The method is available under: https://github.com/s-marton/GRANDE
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Computing the optimal transport distance between statistical distributions is a fundamental task in machine learning. One remarkable recent advancement is entropic regularization and the Sinkhorn algorithm, which utilizes only matrix scaling and guarantees an approximated solution with near-linear runtime. Despite the success of the Sinkhorn algorithm, its runtime may still be slow due to the potentially large number of iterations needed for convergence. To achieve possibly super-exponential convergence, we present Sinkhorn-Newton-Sparse (SNS), an extension to the Sinkhorn algorithm, by introducing early stopping for the matrix scaling steps and a second stage featuring a Newton-type subroutine. Adopting the variational viewpoint that the Sinkhorn algorithm maximizes a concave Lyapunov potential, we offer the insight that the Hessian matrix of the potential function is approximately sparse. Sparsification of the Hessian results in a fast O(n^2) per-iteration complexity, the same as the Sinkhorn algorithm. In terms of total iteration count, we observe that the SNS algorithm converges orders of magnitude faster across a wide range of practical cases, including optimal transportation between empirical distributions and calculating the Wasserstein W_1, W_2 distance of discretized densities. The empirical performance is corroborated by a rigorous bound on the approximate sparsity of the Hessian matrix.
