Update ArXiv ID and paper links

#3
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +40 -88
README.md CHANGED
@@ -8,7 +8,7 @@ size_categories:
8
  task_categories:
9
  - text-generation
10
  pretty_name: UltraData-Math
11
- arxiv: xxxx.xxxxx
12
  tags:
13
  - llm
14
  - pretraining
@@ -19,31 +19,31 @@ tags:
19
  - mathematical-reasoning
20
  configs:
21
  - config_name: UltraData-Math-L3-Conversation-Synthetic
22
- data_files: "data/UltraData-Math-L3/Conversation-Synthetic/*.parquet"
23
  - config_name: UltraData-Math-L3-Multi-Style-Synthetic
24
- data_files: "data/UltraData-Math-L3/Multi-Style-Synthetic/*.parquet"
25
  - config_name: UltraData-Math-L3-QA-Synthetic
26
- data_files: "data/UltraData-Math-L3/QA-Synthetic/*.parquet"
27
  - config_name: UltraData-Math-L3-Textbook-Exercise-Synthetic
28
- data_files: "data/UltraData-Math-L3/Textbook-Exercise-Synthetic/*.parquet"
29
  - config_name: UltraData-Math-L2-preview
30
- data_files: "data/UltraData-Math-L2-preview/**/*.parquet"
31
  - config_name: UltraData-Math-L1
32
- data_files: "data/UltraData-Math-L1/**/*.parquet"
33
  default_config_name: UltraData-Math-L3-Conversation-Synthetic
34
  ---
35
 
36
  # UltraData-Math
37
 
38
  <div align="center">
39
- <img src="assets/ultradata-math-logo.png" width="600"/>
40
  </div>
41
 
42
  <p align="center">
43
- <a href="https://huggingface.co/datasets/openbmb/UltraData-Math">🤗 Dataset</a> | <a href="https://github.com/UltraData-OpenBMB/UltraData-Math">💻 Source Code</a> | <a href="https://huggingface.co/datasets/openbmb/UltraData-Math/blob/main/README_ZH.md">🇨🇳 中文 README</a>
44
  </p>
45
 
46
- ***UltraData-Math*** is a large-scale, high-quality mathematical pre-training dataset totaling **290B+ tokens** across three progressive tiers—**L1** (170.5B tokens web corpus), **L2** (33.7B tokens quality-selected), and **L3** (88B tokens multi-format refined)—designed to systematically enhance mathematical reasoning in LLMs. It has been applied to the mathematical pre-training of the [MiniCPM Series](https://huggingface.co/collections/openbmb/minicpm4) models.
47
 
48
  ## 🆕 What's New
49
 
@@ -52,11 +52,7 @@ default_config_name: UltraData-Math-L3-Conversation-Synthetic
52
 
53
  ## 📚 Introduction
54
 
55
- High-quality pre-training data is crucial for enhancing the mathematical reasoning capabilities of large language models (LLMs). However, existing mathematical pre-training data construction schemes have the following shortcomings:
56
-
57
- - **HTML Parsing**: General parsers (such as trafilatura, readability) are mainly designed for news/article parsing, lacking specialized processing for mathematical formulas and other content, often leading to formula structure destruction or loss; meanwhile, mathematical discussions on forum-like pages are difficult to extract completely.
58
- - **Data Quality**: Existing datasets generally lack a systematic quality grading mechanism, with high-value mathematical content mixed with low-quality noise.
59
- - **Data Diversity**: Mainstream datasets mostly originate from textbooks or competition question banks, lacking mathematical discussions and application scenarios in real web pages; synthetic data formats are single, difficult to cover diverse needs such as multi-turn dialogues and multi-style expressions.
60
 
61
  To address these issues, we propose ***UltraData-Math***—a large-scale high-quality pre-training dataset for mathematical reasoning tasks. This dataset is developed based on the [UltraData](https://ultradata.openbmb.cn/blog/position-paper) L0-L4 Tiered Data Management Framework, containing four progressive levels:
62
 
@@ -75,67 +71,43 @@ Experiments show that on the MiniCPM-1.2B architecture, ***UltraData-Math*** ach
75
 
76
  ## 🏗️ Data Processing Pipeline
77
 
78
- To break through the limitations of existing mathematical datasets in quality and diversity, we established a refined grading standard centered on "mathematical content integrity" and "information density". ***UltraData-Math*** adopts the **L0-L4 Tiered Data Management Framework** proposed by the [UltraData](https://ultradata.openbmb.cn/blog/position-paper) paper. Through standardized level definitions, it achieves orderly management and efficient flow of mathematical data assets. Each level represents higher data purity and mathematical value, while also corresponding to a more refined degree of processing.
79
 
80
  <div align="center">
81
- <img src="assets/ultradata-math-pipeline.png" width="900"/>
82
  </div>
83
 
84
  ### L0: Raw Data Parsing and Standardization
85
 
86
- **Goal**: Address the poor support of general HTML parsers for mathematical formulas and maximize the preservation of mathematical semantics in web pages.
87
-
88
- The L0 phase mainly processes raw web data obtained from sources such as Common Crawl. Given the specificity of mathematical web pages, we develop specialized parsing strategies through the [UltraData-Math-Parser](https://huggingface.co/spaces/openbmb/UltraData-Math-L0-Parser) instead of directly using general parsers like trafilatura or readability.
89
 
90
- - **Unified Parsing Mode**: Automatically identifies page types to ensure complete content extraction as much as possible.
91
- - **Multi-level Fallback Strategy**: To prevent data loss due to parsing failures, we implement a multi-level fallback mechanism to ensure text content is captured even if structured parsing fails.
92
- - **Mathematical Formula Standardization**: We unify different mathematical expressions in web pages into standard LaTeX format, achieving data format normalization for unified model learning.
93
 
94
  ### L1: Heuristic Cleaning and Filtering
95
 
96
- **Goal**: Remove format noise and improve data readability and standardization.
97
-
98
- After obtaining text containing complete mathematical formulas, we clean the L0 data through a series of heuristic rules:
99
 
100
- - **Format Repair**:
101
- - Clean invisible characters, garbled text, and unnatural continuous line breaks.
102
- - Remove irrelevant web noise such as navigation bars, footers, ad pop-ups, and "read more".
103
- - **Content Filtering**:
104
- - *Length Filtering*: Remove overly short text fragments, which usually lack context and are difficult to support effective mathematical reasoning training.
105
- - *Language Identification*: Ensure the dataset is composed mainly of high-quality English and Chinese mathematical content.
106
- - *Document Deduplication*: Perform deduplication at the document level to prevent duplicate content from biasing model training.
107
 
108
  ### L2: Selection Based on Quality Models
109
 
110
- **Goal**: Identify core corpora with high value from massive data.
111
 
112
- Although L1 data has a clean format, the content quality varies. The L2 phase introduces a model-based quality assessment system:
113
-
114
- - **Seed Data Annotation**: Use proprietary large models to score a portion of seed data across multiple dimensions.
115
- - **Classifier Training and Distillation**: Train lightweight embedding classifiers based on annotated data to equip them with the ability to identify high-value mathematical content.
116
- - **Full-scale Inference**: Use the trained classifier to score and screen L1 data in full.
117
- - *Retention*: Content containing detailed problem-solving steps, mathematical concept explanations, and high-level academic discussions.
118
- - *Exclusion*: Simple stacking of nouns, meaningless lists of numbers, juvenile content, or noise from non-mathematical fields.
119
 
120
  ### L3: Refined Data
121
 
122
- **Goal**: Produce structured content with clear reasoning and explicit educational intent through rewriting, synthetic generation, and refinement, achieving textbook-quality standards and ensuring maximum learnability.
123
-
124
- Natural web data is mostly declarative text, lacking structured reasoning steps and diverse pedagogical formats. To enhance the model's chain-of-thought (CoT) capabilities and multi-turn interaction skills, we build the L3 refined data layer through the [UltraData-Math-Generator](https://huggingface.co/spaces/openbmb/UltraData-Math-L3-Generator):
125
-
126
- - **Q&A Pair Generation**: Use high-performance models to rewrite declarative documents into "Question-Answer" pairs, constructing QA-style data with explicit reasoning steps.
127
- - **Multi-turn Dialogue Synthesis**: Simulate "Teacher-Student" tutoring scenarios to generate multi-turn dialogue data containing follow-up questions, corrections, and guidance.
128
- - **Multi-style Rewriting**: Rewrite single-source data into multiple styles (such as rigorous textbook style, competition problem-solving style, intuitive popular science style) to improve model generalization.
129
- - **Knowledge Point Textbook Generation**: Generate systematic textbook-like content based on specific knowledge points to ensure the model masters core mathematical concepts.
130
- - **Format Repair and Enhancement**: Fix formatting issues in the source data (e.g., broken LaTeX formulas, inconsistent notation) and enhance content coherence to achieve textbook-quality standards.
131
 
132
- Based on the above methodology, we produce the following ***UltraData-Math*** datasets:
133
-
134
- | Dataset | # Tokens | # Documents |
135
- |:---|:---:|:---:|
136
- | UltraData-Math-L1 | 170.5B | 85.6M |
137
- | UltraData-Math-L2-preview | 33.7B | 14.98M |
138
- | UltraData-Math-L3 | 88B | 81.4M |
139
 
140
  ## 🚀 Quick Start
141
 
@@ -152,45 +124,18 @@ ds = load_dataset("openbmb/UltraData-Math", "UltraData-Math-L2-preview")
152
 
153
  # Load UltraData-Math-L3 (default: Conversation-Synthetic)
154
  ds = load_dataset("openbmb/UltraData-Math", "UltraData-Math-L3-Conversation-Synthetic")
155
-
156
- # Other L3 configs:
157
- # - UltraData-Math-L3-Multi-Style-Synthetic
158
- # - UltraData-Math-L3-QA-Synthetic
159
- # - UltraData-Math-L3-Textbook-Exercise-Synthetic
160
  ```
161
 
162
  ## 📈 Experimental Results
163
 
164
- We evaluated data quality using the **Decay Verification** method: continuing pre-training of a **MiniCPM-1.2B** base model (pre-trained on 1.3T tokens with **MiniCPM3-4B** tokenizer) with **~100B tokens** (30% target data + 70% general data). We used [OpenCompass](https://github.com/open-compass/opencompass) as our evaluation framework. Evaluation benchmarks include:
165
-
166
- - **General English:** MMLU, ARC-E, ARC-C, BigBench Hard (BBH), CommonSenseQA, HellaSwag, OpenbookQA, PIQA, SIQA, Winogrande
167
- - **General Chinese:** C-Eval, CMMLU
168
- - **Math Reasoning:** MATH500, GSM8K, Math-Bench, R-Bench-Math
169
- - **Code Reasoning:** MBPP, HumanEval
170
-
171
- ### Effectiveness of L0 Parsing Strategy
172
-
173
- To fairly compare different parsing strategies, we conducted experiments on a data subset sampled from the **2023-2024** distribution. We re-parsed the raw HTML from this source using different parsers. This comparison demonstrates the **effectiveness of our L0 Parser** against other parsers.
174
-
175
- <div align="center">
176
- <img src="assets/ultradata-math-l0-parser-comparison.png" width="700"/>
177
- </div>
178
-
179
 
180
  ### Pipeline Effectiveness (L1 vs L2 vs L3)
181
 
182
- To validate the effectiveness of our L0-L3 tiered framework, we conducted ablation studies comparing models trained on different tiers of UltraData-Math. Unlike the L0 parser comparison above (which used a 2023-2024 subset), these results are based on the **full dataset**. Results demonstrate that higher-tier data (L3) significantly boosts mathematical reasoning (MATH500, GSM8K) and general capabilities.
183
 
184
  <div align="center">
185
- <img src="assets/ultradata-math-l1l2l3-comparison.png" width="700"/>
186
- </div>
187
-
188
- ### Full Evaluation Results
189
-
190
- To compare against existing public mathematical pre-training datasets, we trained models independently on each dataset using the same model architecture and training budget (~100B tokens). The baselines include [Nemotron-CC-Math](https://huggingface.co/datasets/nvidia/Nemotron-CC-Math-v1), [MegaMath-Web-Pro](https://huggingface.co/datasets/LLM360/MegaMath), and [FineMath](https://huggingface.co/datasets/HuggingFaceTB/finemath). All models are evaluated under identical conditions for a fair comparison:
191
-
192
- <div align="center">
193
- <img src="assets/ultradata-math-full-comparison.png" width="700"/>
194
  </div>
195
 
196
  ## ❤️ Acknowledgements
@@ -204,6 +149,13 @@ To compare against existing public mathematical pre-training datasets, we traine
204
  If you find **UltraData-Math** useful in your research, please consider citing:
205
 
206
  ```bibtex
 
 
 
 
 
 
 
207
  @misc{ultradata-math,
208
  title={UltraData-Math},
209
  author={UltraData Team},
@@ -215,4 +167,4 @@ If you find **UltraData-Math** useful in your research, please consider citing:
215
 
216
  ## 📜 License
217
 
218
- This project is licensed under the [Apache 2.0](./LICENSE) license.
 
8
  task_categories:
9
  - text-generation
10
  pretty_name: UltraData-Math
11
+ arxiv: '2602.09003'
12
  tags:
13
  - llm
14
  - pretraining
 
19
  - mathematical-reasoning
20
  configs:
21
  - config_name: UltraData-Math-L3-Conversation-Synthetic
22
+ data_files: data/UltraData-Math-L3/Conversation-Synthetic/*.parquet
23
  - config_name: UltraData-Math-L3-Multi-Style-Synthetic
24
+ data_files: data/UltraData-Math-L3/Multi-Style-Synthetic/*.parquet
25
  - config_name: UltraData-Math-L3-QA-Synthetic
26
+ data_files: data/UltraData-Math-L3/QA-Synthetic/*.parquet
27
  - config_name: UltraData-Math-L3-Textbook-Exercise-Synthetic
28
+ data_files: data/UltraData-Math-L3/Textbook-Exercise-Synthetic/*.parquet
29
  - config_name: UltraData-Math-L2-preview
30
+ data_files: data/UltraData-Math-L2-preview/**/*.parquet
31
  - config_name: UltraData-Math-L1
32
+ data_files: data/UltraData-Math-L1/**/*.parquet
33
  default_config_name: UltraData-Math-L3-Conversation-Synthetic
34
  ---
35
 
36
  # UltraData-Math
37
 
38
  <div align="center">
39
+ <img src="https://huggingface.co/datasets/openbmb/UltraData-Math/resolve/main/assets/ultradata-math-logo.png" width="600"/>
40
  </div>
41
 
42
  <p align="center">
43
+ <a href="https://huggingface.co/datasets/openbmb/UltraData-Math">🤗 Dataset</a> | <a href="https://huggingface.co/papers/2602.09003">📄 Paper</a> | <a href="https://ultradata.openbmb.cn">🌐 Project Page</a> | <a href="https://github.com/UltraData-OpenBMB/UltraData-Math">💻 Source Code</a> | <a href="https://huggingface.co/datasets/openbmb/UltraData-Math/blob/main/README_ZH.md">🇨🇳 中文 README</a>
44
  </p>
45
 
46
+ ***UltraData-Math*** is a large-scale, high-quality mathematical pre-training dataset totaling **290B+ tokens** across three progressive tiers—**L1** (170.5B tokens web corpus), **L2** (33.7B tokens quality-selected), and **L3** (88B tokens multi-format refined)—designed to systematically enhance mathematical reasoning in LLMs. It was introduced in the paper [Data Science and Technology Towards AGI Part I: Tiered Data Management](https://huggingface.co/papers/2602.09003) and has been applied to the mathematical pre-training of the [MiniCPM Series](https://huggingface.co/collections/openbmb/minicpm4) models.
47
 
48
  ## 🆕 What's New
49
 
 
52
 
53
  ## 📚 Introduction
54
 
55
+ High-quality pre-training data is crucial for enhancing the mathematical reasoning capabilities of large language models (LLMs). However, existing mathematical pre-training data construction schemes often encounter issues with HTML parsing, data quality, and diversity.
 
 
 
 
56
 
57
  To address these issues, we propose ***UltraData-Math***—a large-scale high-quality pre-training dataset for mathematical reasoning tasks. This dataset is developed based on the [UltraData](https://ultradata.openbmb.cn/blog/position-paper) L0-L4 Tiered Data Management Framework, containing four progressive levels:
58
 
 
71
 
72
  ## 🏗️ Data Processing Pipeline
73
 
74
+ To break through the limitations of existing mathematical datasets in quality and diversity, we established a refined grading standard centered on "mathematical content integrity" and "information density". ***UltraData-Math*** adopts the **L0-L4 Tiered Data Management Framework** proposed by the [UltraData](https://huggingface.co/papers/2602.09003) paper.
75
 
76
  <div align="center">
77
+ <img src="https://huggingface.co/datasets/openbmb/UltraData-Math/resolve/main/assets/ultradata-math-pipeline.png" width="900"/>
78
  </div>
79
 
80
  ### L0: Raw Data Parsing and Standardization
81
 
82
+ The L0 phase mainly processes raw web data obtained from sources such as Common Crawl. Given the specificity of mathematical web pages, we develop specialized parsing strategies through the [UltraData-Math-Parser](https://huggingface.co/spaces/openbmb/UltraData-Math-L0-Parser).
 
 
83
 
84
+ - **Unified Parsing Mode**: Automatically identifies page types to ensure complete content extraction.
85
+ - **Multi-level Fallback Strategy**: Implementation of a multi-level fallback mechanism to ensure text content is captured even if structured parsing fails.
86
+ - **Mathematical Formula Standardization**: Unification of different mathematical expressions in web pages into standard LaTeX format.
87
 
88
  ### L1: Heuristic Cleaning and Filtering
89
 
90
+ Cleans noise through heuristic rules:
 
 
91
 
92
+ - **Format Repair**: Clean invisible characters, garbled text, and unnatural continuous line breaks.
93
+ - **Content Filtering**: Length filtering, language identification, and document-level deduplication.
 
 
 
 
 
94
 
95
  ### L2: Selection Based on Quality Models
96
 
97
+ The L2 phase introduces a model-based quality assessment system:
98
 
99
+ - **Seed Data Annotation**: Use proprietary large models to score seed data.
100
+ - **Classifier Training and Distillation**: Train lightweight embedding classifiers based on annotated data.
101
+ - **Full-scale Inference**: Use the trained classifier to score and screen L1 data.
 
 
 
 
102
 
103
  ### L3: Refined Data
104
 
105
+ Production of structured content with clear reasoning through the [UltraData-Math-Generator](https://huggingface.co/spaces/openbmb/UltraData-Math-L3-Generator):
 
 
 
 
 
 
 
 
106
 
107
+ - **Q&A Pair Generation**: Rewrite declarative documents into "Question-Answer" pairs.
108
+ - **Multi-turn Dialogue Synthesis**: Simulate "Teacher-Student" tutoring scenarios.
109
+ - **Multi-style Rewriting**: Rewrite single-source data into multiple styles.
110
+ - **Knowledge Point Textbook Generation**: Systematic textbook-like content based on specific knowledge points.
 
 
 
111
 
112
  ## 🚀 Quick Start
113
 
 
124
 
125
  # Load UltraData-Math-L3 (default: Conversation-Synthetic)
126
  ds = load_dataset("openbmb/UltraData-Math", "UltraData-Math-L3-Conversation-Synthetic")
 
 
 
 
 
127
  ```
128
 
129
  ## 📈 Experimental Results
130
 
131
+ We evaluated data quality using the **Decay Verification** method by continuing pre-training of a **MiniCPM-1.2B** base model with **~100B tokens**.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
133
  ### Pipeline Effectiveness (L1 vs L2 vs L3)
134
 
135
+ Results demonstrate that higher-tier data (L3) significantly boosts mathematical reasoning (MATH500, GSM8K) and general capabilities.
136
 
137
  <div align="center">
138
+ <img src="https://huggingface.co/datasets/openbmb/UltraData-Math/resolve/main/assets/ultradata-math-l1l2l3-comparison.png" width="700"/>
 
 
 
 
 
 
 
 
139
  </div>
140
 
141
  ## ❤️ Acknowledgements
 
149
  If you find **UltraData-Math** useful in your research, please consider citing:
150
 
151
  ```bibtex
152
+ @article{wang2026tiered,
153
+ title={Data Science and Technology Towards AGI Part I: Tiered Data Management},
154
+ author={Yudong Wang and Zixuan Fu and Hengyu Zhao and Chen Zhao and Chuyue Zhou and Xinle Lin and Hongya Lyu and Shuaikang Xue and Yi Yi and Yingjiao Wang and Zhi Zheng and Yuzhou Zhang and Jie Zhou and Chaojun Xiao and Xu Han and Zhiyuan Liu and Maosong Sun},
155
+ journal={arXiv preprint arXiv:2602.09003},
156
+ year={2026}
157
+ }
158
+
159
  @misc{ultradata-math,
160
  title={UltraData-Math},
161
  author={UltraData Team},
 
167
 
168
  ## 📜 License
169
 
170
+ This project is licensed under the [Apache 2.0](./LICENSE) license.