Natural scene reconstruction from fMRI signals using generative latent diffusion
Paper
•
2303.05334
•
Published
Implementation and improvements to paper "Brain-Diffuser: Natural scene reconstruction from fMRI signals using generative latent diffusion" by Furkan Ozcelik and Rufin VanRullen.
conda env create -f environment.yml . It is an extensive environment and may include redundant libraries. You may also create environment by checking requirements yourself.cd data
python download_nsddata.py
cd data
python prepare_nsddata.py -sub 1
python prepare_nsddata.py -sub 2
python prepare_nsddata.py -sub 5
python prepare_nsddata.py -sub 7
vdvae/model/ folderwget https://openaipublic.blob.core.windows.net/very-deep-vaes-assets/vdvae-assets-2/imagenet64-iter-1600000-log.jsonl
wget https://openaipublic.blob.core.windows.net/very-deep-vaes-assets/vdvae-assets-2/imagenet64-iter-1600000-model.th
wget https://openaipublic.blob.core.windows.net/very-deep-vaes-assets/vdvae-assets-2/imagenet64-iter-1600000-model-ema.th
wget https://openaipublic.blob.core.windows.net/very-deep-vaes-assets/vdvae-assets-2/imagenet64-iter-1600000-opt.th
python scripts/vdvae_extract_features.py -sub xpython scripts/vdvae_regression.py -sub xpython scripts/vdvae_reconstruct_images.py -sub xversatile_diffusion/pretrained/ folderpython scripts/clipvision_extract_features.py -sub x -->python scripts/clipvision_regression.py -sub xpython scripts/versatilediffusion_reconstruct_images.py -sub x . This code is written as you are using two 12GB GPUs but you may edit according to your setup.