gemma3-peft-multiclass

This model is a fine-tuned version of google/gemma-3-270m-it on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2109
  • Accuracy: 0.42
  • F1 Macro: 0.4174
  • Precision Macro: 0.4194
  • Recall Macro: 0.4193

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro Precision Macro Recall Macro
16.4047 0.0710 10 3.6137 0.352 0.3320 0.3414 0.3439
14.2141 0.1421 20 3.4200 0.356 0.3440 0.3466 0.3498
13.5641 0.2131 30 3.2952 0.354 0.3528 0.3651 0.3571
13.9938 0.2842 40 3.1136 0.35 0.3475 0.3472 0.3480
12.8039 0.3552 50 2.9981 0.352 0.3483 0.3495 0.3518
11.6164 0.4263 60 2.8842 0.36 0.3536 0.3576 0.3604
11.4141 0.4973 70 2.7804 0.382 0.3811 0.3892 0.3827
10.9391 0.5684 80 2.7409 0.382 0.3795 0.3942 0.3874
11.2023 0.6394 90 2.6599 0.368 0.3605 0.3686 0.3621
11.1117 0.7105 100 2.5964 0.382 0.3689 0.3782 0.3741
10.8336 0.7815 110 2.5515 0.382 0.3739 0.3737 0.3780
10.7383 0.8526 120 2.5144 0.378 0.3737 0.3775 0.3778
10.7766 0.9236 130 2.5157 0.376 0.3646 0.3887 0.3816
9.9812 0.9947 140 2.4519 0.388 0.3848 0.3864 0.3848
9.3602 1.0639 150 2.4290 0.39 0.3832 0.3870 0.3889
9.6672 1.1350 160 2.4054 0.398 0.3901 0.3951 0.3922
9.6578 1.2060 170 2.3940 0.404 0.4040 0.4068 0.4061
10.1414 1.2771 180 2.4032 0.388 0.3807 0.4050 0.3947
9.7828 1.3481 190 2.3542 0.4 0.3963 0.3984 0.3969
9.8086 1.4192 200 2.3286 0.406 0.4018 0.4031 0.4027
9.1289 1.4902 210 2.3212 0.39 0.3819 0.3964 0.3933
9.5641 1.5613 220 2.3019 0.414 0.4137 0.4157 0.4171
9.6461 1.6323 230 2.2907 0.412 0.4055 0.4088 0.4080
9.1906 1.7034 240 2.2955 0.422 0.4008 0.4265 0.4151
9.0484 1.7744 250 2.2959 0.406 0.4017 0.4147 0.4101
9.2789 1.8455 260 2.2869 0.392 0.3850 0.4055 0.3972
9.3695 1.9165 270 2.2800 0.394 0.3898 0.4064 0.4001
9.1937 1.9876 280 2.2526 0.414 0.4118 0.4137 0.4130
8.7906 2.0568 290 2.2432 0.422 0.4037 0.4311 0.4120
9.143 2.1279 300 2.2473 0.418 0.3911 0.4353 0.4057
9.0289 2.1989 310 2.2312 0.404 0.3995 0.4058 0.4032
8.8203 2.2700 320 2.2432 0.402 0.3979 0.4116 0.4062
9.082 2.3410 330 2.2344 0.416 0.4145 0.4229 0.4206
9.0086 2.4121 340 2.2278 0.418 0.4169 0.4236 0.4204
8.7383 2.4831 350 2.2259 0.408 0.3991 0.4129 0.4085
8.668 2.5542 360 2.2204 0.398 0.3902 0.3975 0.3971
9.1867 2.6252 370 2.2122 0.412 0.4063 0.4102 0.4078
8.8688 2.6963 380 2.2088 0.432 0.4235 0.4312 0.4259
8.85 2.7673 390 2.2119 0.432 0.4255 0.4327 0.4270
9.3047 2.8384 400 2.2091 0.432 0.4264 0.4295 0.4278
9.1258 2.9094 410 2.2139 0.428 0.4250 0.4273 0.4264
8.825 2.9805 420 2.2109 0.42 0.4174 0.4194 0.4193

Framework versions

  • PEFT 0.17.1
  • Transformers 4.57.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
9
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for mikeee/gemma3-peft-multiclass

Adapter
(36)
this model

Evaluation results