HyperCLOVAX-SEED-Text-Think-32B
Extracted text-only LLM from naver-hyperclovax/HyperCLOVAX-SEED-Think-32B
This model contains only the language model component extracted from the original Vision-Language Model (VLM). The vision encoder and multimodal projector have been removed, making it a pure text-to-text model compatible with standard LLaMA inference pipelines.
Model Details
| Property | Value |
|---|---|
| Architecture | LlamaForCausalLM |
| Parameters | ~33B |
| Hidden Size | 5120 |
| Layers | 72 |
| Attention Heads | 40 |
| KV Heads | 8 (GQA) |
| Intermediate Size | 24192 |
| Context Length | 128K |
| Vocab Size | 128,256 |
| Precision | bfloat16 |
| RoPE Theta | 50,000,000 |
What Was Extracted
The original VLM consists of:
- Vision Encoder: Qwen2.5-VL based (~600M params) - removed
- MM Projector: Multimodal projection layers - removed
- Language Model: HyperCLOVAX LLM (~33B params) - extracted ✓
Only the model.language_model.* weights were extracted and remapped to standard LLaMA format.
Usage
With Transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "minpeter/HyperCLOVAX-SEED-Text-Think-32B-hf"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype="bfloat16",
device_map="auto"
)
messages = [{"role": "user", "content": "What is the capital of South Korea?"}]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
outputs = model.generate(inputs.to(model.device), max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
With vLLM
vllm serve minpeter/HyperCLOVAX-SEED-Text-Think-32B-hf \
--dtype bfloat16 \
--tensor-parallel-size 2
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8000/v1", api_key="dummy")
response = client.chat.completions.create(
model="minpeter/HyperCLOVAX-SEED-Text-Think-32B-hf",
messages=[{"role": "user", "content": "안녕하세요! 한국어로 대화할 수 있나요?"}]
)
print(response.choices[0].message.content)
Thinking Mode
The model supports a "thinking mode" for complex reasoning tasks. Use the <|thinking|> token to trigger extended reasoning:
messages = [
{"role": "user", "content": "Solve this step by step: If x + 2y = 10 and 3x - y = 5, find x and y."}
]
# The model may produce <|thinking|>...</|thinking|> blocks with its reasoning process
Hardware Requirements
- Minimum: 2x NVIDIA A100 40GB (with tensor parallelism)
- Recommended: 2x NVIDIA A100 80GB or 4x NVIDIA A6000
Limitations
- This is a text-only model. It cannot process images or videos.
- The model inherits any limitations from the original HyperCLOVAX-SEED-Think-32B.
- Optimized primarily for Korean and English.
License
This model inherits the HyperCLOVAX license from the original model.
Citation
If you use this model, please cite the original:
@misc{hyperclovax-seed-think-32b,
title={HyperCLOVA X SEED Think 32B},
author={NAVER Cloud},
year={2025},
url={https://huggingface.co/naver-hyperclovax/HyperCLOVAX-SEED-Think-32B}
}
Reproduce This Extraction
Want to extract the LLM yourself? Use the included extract_llm.py script.
Prerequisites
pip install safetensors torch tqdm huggingface_hub
Step 1: Download Original VLM (~66GB)
huggingface-cli download naver-hyperclovax/HyperCLOVAX-SEED-Think-32B \
--local-dir ./HyperCLOVAX-SEED-Think-32B
Step 2: Run Extraction Script
# Download the extraction script
wget https://huggingface.co/minpeter/HyperCLOVAX-SEED-Text-Think-32B-hf/resolve/main/extract_llm.py
# Run extraction
python extract_llm.py \
--input ./HyperCLOVAX-SEED-Think-32B \
--output ./HyperCLOVAX-SEED-Text-Think-32B
What the Script Does
- Extracts LLM weights: Filters
model.language_model.*tensors from the VLM - Remaps keys: Converts to standard LLaMA format
model.language_model.model.*→model.*model.language_model.lm_head.*→lm_head.*
- Creates config: Generates LLaMA-compatible
config.jsonfrom VLM'stext_config - Copies tokenizer: Preserves all tokenizer files unchanged
Output Structure
HyperCLOVAX-SEED-Text-Think-32B/
├── config.json # LLaMA config
├── generation_config.json
├── model-00001-of-00013.safetensors # ~5GB shards
├── ...
├── model-00013-of-00013.safetensors
├── model.safetensors.index.json
├── tokenizer.json
├── tokenizer_config.json
├── special_tokens_map.json
├── added_tokens.json
├── vocab.json
├── merges.txt
└── chat_template.jinja
Verify Extraction
# Quick test with vLLM
vllm serve ./HyperCLOVAX-SEED-Text-Think-32B \
--dtype bfloat16 \
--tensor-parallel-size 2
# In another terminal
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{"model": "./HyperCLOVAX-SEED-Text-Think-32B", "messages": [{"role": "user", "content": "Hello!"}]}'
Acknowledgments
- Original model by NAVER Cloud HyperCLOVA X
- Extraction performed to enable text-only inference without vision dependencies
- Downloads last month
- 502
Model tree for minpeter/HyperCLOVAX-SEED-Text-Think-32B-hf
Base model
naver-hyperclovax/HyperCLOVAX-SEED-Think-32B