LiteHRNet: Optimized for Qualcomm Devices
LiteHRNet is a machine learning model that detects human pose and returns a location and confidence for each of 17 joints.
This is based on the implementation of LiteHRNet found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.
Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.
Getting Started
There are two ways to deploy this model on your device:
Option 1: Download Pre-Exported Models
Below are pre-exported model assets ready for deployment.
| Runtime | Precision | Chipset | SDK Versions | Download |
|---|---|---|---|---|
| ONNX | float | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| QNN_DLC | float | Universal | QAIRT 2.42 | Download |
| TFLITE | float | Universal | QAIRT 2.42, TFLite 2.17.0 | Download |
For more device-specific assets and performance metrics, visit LiteHRNet on Qualcomm® AI Hub.
Option 2: Export with Custom Configurations
Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:
- Custom weights (e.g., fine-tuned checkpoints)
- Custom input shapes
- Target device and runtime configurations
This option is ideal if you need to customize the model beyond the default configuration provided here.
See our repository for LiteHRNet on GitHub for usage instructions.
Model Details
Model Type: Model_use_case.pose_estimation
Model Stats:
- Input resolution: 256x192
- Number of parameters: 1.11M
- Model size (float): 4.49 MB
Performance Summary
| Model | Runtime | Precision | Chipset | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit |
|---|---|---|---|---|---|---|
| LiteHRNet | ONNX | float | Snapdragon® X Elite | 5.871 ms | 4 - 4 MB | NPU |
| LiteHRNet | ONNX | float | Snapdragon® 8 Gen 3 Mobile | 3.412 ms | 0 - 175 MB | NPU |
| LiteHRNet | ONNX | float | Qualcomm® QCS8550 (Proxy) | 5.591 ms | 0 - 158 MB | NPU |
| LiteHRNet | ONNX | float | Qualcomm® QCS9075 | 6.235 ms | 1 - 4 MB | NPU |
| LiteHRNet | ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 2.928 ms | 0 - 149 MB | NPU |
| LiteHRNet | ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 2.763 ms | 0 - 149 MB | NPU |
| LiteHRNet | QNN_DLC | float | Snapdragon® X Elite | 2.393 ms | 1 - 1 MB | NPU |
| LiteHRNet | QNN_DLC | float | Snapdragon® 8 Gen 3 Mobile | 1.347 ms | 0 - 110 MB | NPU |
| LiteHRNet | QNN_DLC | float | Qualcomm® QCS8275 (Proxy) | 4.887 ms | 1 - 80 MB | NPU |
| LiteHRNet | QNN_DLC | float | Qualcomm® QCS8550 (Proxy) | 2.065 ms | 1 - 118 MB | NPU |
| LiteHRNet | QNN_DLC | float | Qualcomm® SA8775P | 2.662 ms | 1 - 82 MB | NPU |
| LiteHRNet | QNN_DLC | float | Qualcomm® QCS9075 | 2.487 ms | 1 - 3 MB | NPU |
| LiteHRNet | QNN_DLC | float | Qualcomm® QCS8450 (Proxy) | 2.915 ms | 0 - 107 MB | NPU |
| LiteHRNet | QNN_DLC | float | Qualcomm® SA7255P | 4.887 ms | 1 - 80 MB | NPU |
| LiteHRNet | QNN_DLC | float | Qualcomm® SA8295P | 3.449 ms | 0 - 82 MB | NPU |
| LiteHRNet | QNN_DLC | float | Snapdragon® 8 Elite For Galaxy Mobile | 1.024 ms | 1 - 85 MB | NPU |
| LiteHRNet | QNN_DLC | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.847 ms | 1 - 84 MB | NPU |
| LiteHRNet | TFLITE | float | Snapdragon® 8 Gen 3 Mobile | 2.684 ms | 0 - 159 MB | NPU |
| LiteHRNet | TFLITE | float | Qualcomm® QCS8275 (Proxy) | 8.657 ms | 0 - 119 MB | NPU |
| LiteHRNet | TFLITE | float | Qualcomm® QCS8550 (Proxy) | 4.25 ms | 0 - 12 MB | NPU |
| LiteHRNet | TFLITE | float | Qualcomm® SA8775P | 5.259 ms | 0 - 119 MB | NPU |
| LiteHRNet | TFLITE | float | Qualcomm® QCS9075 | 5.046 ms | 0 - 10 MB | NPU |
| LiteHRNet | TFLITE | float | Qualcomm® QCS8450 (Proxy) | 5.332 ms | 0 - 139 MB | NPU |
| LiteHRNet | TFLITE | float | Qualcomm® SA7255P | 8.657 ms | 0 - 119 MB | NPU |
| LiteHRNet | TFLITE | float | Qualcomm® SA8295P | 6.273 ms | 0 - 117 MB | NPU |
| LiteHRNet | TFLITE | float | Snapdragon® 8 Elite For Galaxy Mobile | 2.217 ms | 0 - 122 MB | NPU |
| LiteHRNet | TFLITE | float | Snapdragon® 8 Elite Gen 5 Mobile | 2.017 ms | 0 - 122 MB | NPU |
License
- The license for the original implementation of LiteHRNet can be found here.
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
