GLM-5
👋 Join our WeChat or Discord community.
📖 Check out the GLM-5 technical blog.
📍 Use GLM-5 API services on Z.ai API Platform.
👉 One click to GLM-5.
Introduction
We are launching GLM-5, targeting complex systems engineering and long-horizon agentic tasks. Scaling is still one of the most important ways to improve the intelligence efficiency of Artificial General Intelligence (AGI). Compared to GLM-4.5, GLM-5 scales from 355B parameters (32B active) to 744B parameters (40B active), and increases pre-training data from 23T to 28.5T tokens. GLM-5 also integrates DeepSeek Sparse Attention (DSA), largely reducing deployment cost while preserving long-context capacity.
Reinforcement learning aims to bridge the gap between competence and excellence in pre-trained models. However, deploying it at scale for LLMs is a challenge due to the RL training inefficiency. To this end, we developed slime, a novel asynchronous RL infrastructure that substantially improves training throughput and efficiency, enabling more fine-grained post-training iterations. With advances in both pre-training and post-training, GLM-5 delivers significant improvement compared to GLM-4.7 across a wide range of academic benchmarks and achieves best-in-class performance among all open-source models in the world on reasoning, coding, and agentic tasks, closing the gap with frontier models.
Benchmark
| GLM-5 | GLM-4.7 | DeepSeek-V3.2 | Kimi K2.5 | Claude Opus 4.5 | Gemini 3 Pro | GPT-5.2 (xhigh) | |
|---|---|---|---|---|---|---|---|
| HLE | 30.5 | 24.8 | 25.1 | 31.5 | 28.4 | 37.2 | 35.4 |
| HLE (w/ Tools) | 50.4 | 42.8 | 40.8 | 51.8 | 43.4* | 45.8* | 45.5* |
| AIME 2026 I | 92.7 | 92.9 | 92.7 | 92.5 | 93.3 | 90.6 | - |
| HMMT Nov. 2025 | 96.9 | 93.5 | 90.2 | 91.1 | 91.7 | 93.0 | 97.1 |
| IMOAnswerBench | 82.5 | 82.0 | 78.3 | 81.8 | 78.5 | 83.3 | 86.3 |
| GPQA-Diamond | 86.0 | 85.7 | 82.4 | 87.6 | 87.0 | 91.9 | 92.4 |
| SWE-bench Verified | 77.8 | 73.8 | 73.1 | 76.8 | 80.9 | 76.2 | 80.0 |
| SWE-bench Multilingual | 73.3 | 66.7 | 70.2 | 73.0 | 77.5 | 65.0 | 72.0 |
| Terminal-Bench 2.0 (Terminus 2) | 56.2 / 60.7 † | 41.0 | 39.3 | 50.8 | 59.3 | 54.2 | 54.0 |
| Terminal-Bench 2.0 (Claude Code) | 56.2 / 61.1 † | 32.8 | 46.4 | - | 57.9 | - | - |
| CyberGym | 43.2 | 23.5 | 17.3 | 41.3 | 50.6 | 39.9 | - |
| BrowseComp | 62.0 | 52.0 | 51.4 | 60.6 | 37.0 | 37.8 | - |
| BrowseComp (w/ Context Manage) | 75.9 | 67.5 | 67.6 | 74.9 | 67.8 | 59.2 | 65.8 |
| BrowseComp-Zh | 72.7 | 66.6 | 65.0 | 62.3 | 62.4 | 66.8 | 76.1 |
| τ²-Bench | 89.7 | 87.4 | 85.3 | 80.2 | 91.6 | 90.7 | 85.5 |
| MCP-Atlas (Public Set) | 67.8 | 52.0 | 62.2 | 63.8 | 65.2 | 66.6 | 68.0 |
| Tool-Decathlon | 38.0 | 23.8 | 35.2 | 27.8 | 43.5 | 36.4 | 46.3 |
| Vending Bench 2 | $4,432.12 | $2,376.82 | $1,034.00 | $1,198.46 | $4,967.06 | $5,478.16 | $3,591.33 |
*: refers to their scores of full set.
†: A verified version of Terminal-Bench 2.0 that fixes some ambiguous instructions. See footnote for more evaluation details.
Footnote
- Humanity’s Last Exam (HLE) & other reasoning tasks: We evaluate with a maximum generation length of 131,072 tokens (
temperature=1.0, top_p=0.95, max_new_tokens=131072). By default, we report the text-only subset; results marked with * are from the full set. We use GPT-5.2 (medium) as the judge model. For HLE-with-tools, we use a maximum context length of 202,752 tokens. - SWE-bench & SWE-bench Multilingual: We run the SWE-bench suite with OpenHands using a tailored instruction prompt. Settings:
temperature=0.7, top_p=0.95, max_new_tokens=16384, with a 200K context window. - BrowserComp: Without context management, we retain details from the most recent 5 turns. With context management, we use the same discard-all strategy as DeepSeek-v3.2 and Kimi K2.5.
- Terminal-Bench 2.0 (Terminus 2): We evaluate with the Terminus framework using
timeout=2h, temperature=0.7, top_p=1.0, max_new_tokens=8192, with a 128K context window. Resource limits are capped at 16 CPUs and 32 GB RAM. - Terminal-Bench 2.0 (Claude Code): We evaluate in Claude Code 2.1.14 (think mode, default effort) with
temperature=1.0, top_p=0.95, max_new_tokens=65536. We remove wall-clock time limits due to generation speed, while preserving per-task CPU and memory constraints. Scores are averaged over 5 runs. We fix environment issues introduced by Claude Code and also report results on a verified Terminal-Bench 2.0 dataset that resolves ambiguous instructions (see: https://huggingface.co/datasets/zai-org/terminal-bench-2-verified). - CyberGym: We evaluate in Claude Code 2.1.18 (think mode, no web tools) with (
temperature=1.0, top_p=1.0, max_new_tokens=32000) and a 250-minute timeout per task. Results are single-run Pass@1 over 1,507 tasks. - MCP-Atlas: All models are evaluated in think mode on the 500-task public subset with a 10-minute timeout per task. We use Gemini 3 Pro as the judge model.
- τ²-bench: We add a small prompt adjustment in Retail and Telecom to avoid failures caused by premature user termination. For Airline, we apply the domain fixes proposed in the Claude Opus 4.5 system card.
- Vending Bench 2: Runs are conducted independently by Andon Labs.
Serve GLM-5 Locally
Prepare environment
vLLM, SGLang, and xLLM all support local deployment of GLM-5. A simple deployment guide is provided here.
vLLM
Using Docker as:
docker pull vllm/vllm-openai:nightlyor using pip:
pip install -U vllm --pre --index-url https://pypi.org/simple --extra-index-url https://wheels.vllm.ai/nightlythen upgrade transformers:
pip install git+https://github.com/huggingface/transformers.gitSGLang
Using Docker as:
docker pull lmsysorg/sglang:glm5-hopper # For Hopper GPU docker pull lmsysorg/sglang:glm5-blackwell # For Blackwell GPU
Deploy
vLLM
vllm serve zai-org/GLM-5-FP8 \ --tensor-parallel-size 8 \ --gpu-memory-utilization 0.85 \ --speculative-config.method mtp \ --speculative-config.num_speculative_tokens 1 \ --tool-call-parser glm47 \ --reasoning-parser glm45 \ --enable-auto-tool-choice \ --served-model-name glm-5-fp8Check the recipes for more details.
SGLang
python3 -m sglang.launch_server \ --model-path zai-org/GLM-5-FP8 \ --tp-size 8 \ --tool-call-parser glm47 \ --reasoning-parser glm45 \ --speculative-algorithm EAGLE \ --speculative-num-steps 3 \ --speculative-eagle-topk 1 \ --speculative-num-draft-tokens 4 \ --mem-fraction-static 0.85 \ --served-model-name glm-5-fp8Check the sglang cookbook for more details.
xLLM and other Ascend NPU
Please check the deployment guide here.
Citation
Our technical report is coming soon.
- Downloads last month
- -
Model tree for unsloth/GLM-5
Base model
zai-org/GLM-5